
Streams II
Ali Malik

malikali@stanford.edu

mailto:malikali@stanford.edu
mailto:malikali@stanford.edu

Recap

Stream Miscellany

Stream Internals

Stream Manipulators

Stringstream

Tying it all Together

Game Plan

Announcements

Recap

Output Streams

Can only receive data.

● The std::cout stream is an example of an output stream.
● All output streams are of type std::ostream.

Send data using stream insertion operator: <<

Insertions converts data to string and sends to stream.

Input Streams

Can only give you data.

● The std::cin stream is an example of an input stream.
● All input streams are of type std::istream.

Pull out data using stream extraction operator: >>

Extraction gets data from stream as a string and converts it into
the appropriate type.

There are some quirks with extracting a string from a stream.

Reading into a string using >> will only read a single word, not the
whole line.

To read a whole line, use

getline(istream& stream, string& line);

Reading Data From a File

Some additional methods for using streams:

input.get(ch); // reads one char at a time

input.close(); // closes stream

input.clear(); // resets any fail bits

input.open("filename"); // open stream on file

input.seekg(0); // rewinds stream to start

Stream Miscellany

Stream Internals

Writing to a console/file is a slow operation.

If the program had to write each character immediately, runtime
would significantly slow down.

What can we do?

Buffering

Idea:

Accumulate characters in a temporary buffer/array.

When buffer is full, write out all contents of the buffer to the
output device at once.

Buffering

This process is known as flushing the stream

Let’s look at this in action:

Stream Buffering

(StreamBuffer.pro)

Buffering

The internal sequence of data stored in a stream is called a
buffer.

Istreams use them to store data we haven’t used yet

Ostreams use them to store data they haven’t passed along yet.

Buffering

If we want to force the contents of the buffer to their destination,
we can flush the stream:

stream.flush(ch); // use by default

stream << std::flush; // use if you are printing

flush(stream) // no good reason to use this

stream << std::endl; // use if you want a newline

Flushing the Buffer

If we want to force the contents of the buffer to their destination,
we can flush the stream:

stream.flush(ch); // use by default

stream << std::flush; // use if you are printing

flush(stream) // no good reason to use this

stream << std::endl; // use if you want a newline

Flushing the Buffer

If we want to force the contents of the buffer to their destination,
we can flush the stream:

stream.flush(ch); // use by default

stream << std::flush; // use if you are printing

stream << std::endl; // use if you want a newline

Flushing the Buffer

If we want to force the contents of the buffer to their destination,
we can flush the stream:

stream.flush(ch); // use by default

stream << std::flush; // use if you are printing

stream << std::endl; // use if you want a newline

Flushing the Buffer

This is equivalent to stream << "\n" << std::flush;

Let’s look at this in action:

Stream Buffering

(StreamBuffer.pro)

Buffering

Not all streams are buffered (std::cerr is an example).

We can get a very real sense of the speed difference:

Buffering

Stream Buffering Speed

(BufferSpeed.pro)

Streams have four bits to give us information about their state:

● Good bit No errors, the stream is good to go

● EOF bit End-of-file was reached during a previous operation

● Fail bit Logical error on a previous operation

● Bad bit Likely unrecoverable error on previous operation

Stream bits

1. Read data
2. Check if data is valid, if not break
3. Use data
4. Go back to step 1

while(true) {
 stream >> temp;
 if(stream.fail()) break;
 do_something(temp);
}

Which bit to use?

Stream Shortcuts

The << and >> operators are not magic, they are actually
functions!

Chaining >> or <<

std::cout << "hello";

operator<<(std::cout, "hello");

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

std::cout << "hello" << 23 << "world";

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

(((std::cout << "hello") << 23) << "world");

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

(((std::cout << "hello") << 23) << "world");

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

(((std::cout) << 23) << "world");

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

((std::cout << 23) << "world");

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

((std::cout << 23) << "world");

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

((std::cout) << "world");

We know functions can return things.

The << and >> operators return the stream passed as their left
argument.

This is why this works:

Chaining >> or <<

(std::cout << "world");

Let’s look at this code again:

Which bit to use? - Part II

while(true) {
 stream >> temp;
 if(stream.fail()) break;
 do_something(temp);
}

Let’s look at this code again:

Which bit to use? - Part II

while(true) {
 stream >> temp;
 if(stream.fail()) break;
 do_something(temp);
}

Streams can be
converted to bool

Let’s look at this code again:

Which bit to use? - Part II

while(true) {
 stream >> temp;
 if(!stream) break;
 do_something(temp);
}

Streams can be
converted to bool

Let’s look at this code again:

Which bit to use? - Part II

while(true) {
 stream >> temp;
 if(!stream) break; // checks fail or bad bit
 do_something(temp);
}

Let’s look at this code again:

Which bit to use? - Part II

while(true) {
 stream >> temp;
 if(!stream) break; // checks fail or bad bit
 do_something(temp);
}

We know this returns the stream.

Let’s look at this code again:

while(true) {
 if(!(stream >> temp)) break;
 do_something(temp);
}

Which bit to use? - Part II

Let’s look at this code again:

while(true) {
 if(!(stream >> temp)) break;
 do_something(temp);
}

Which bit to use? - Part II

We can simplify the logic

Let’s look at this code again:

while(stream >> temp) {
 do_something(temp);
}

Which bit to use? - Part II

The same principle applies with getline

while(stream >> temp) {
 do_something(temp);
}

Which bit to use? - Part II

while(getline(stream, temp)) {
 do_something(temp);
}

Stream Manipulators

There are some special keywords that change the behaviour of
the stream when inserted.

std::endl and std::flush are two examples.

Stream Manipulator

Common:
● endl inserts a newline and flushes the stream
● ws skips all whitespace until it finds another char
● boolalpha prints “true” and “false” for bools

Numeric:
● hex: prints numbers in hex
● setprecision: adjusts the precision numbers print with

Padding:
● setw pads output
● setfill fills padding with character

Stream Manipulator

Some examples - Padding

#include <iomanip>

std::cout << "[" << std::setw(10) << "Hi" << "]"
 << std::endl;

[Hi]

Outputs:

#include <iomanip>

std::cout << "[" << std::left
<< std::setw(10) << "Hi" << "]" << std::endl;

Some examples - Padding

[Hi]

Outputs:

#include <iomanip>

std::cout << "[" << std::left << std::setfill('-')
<< std::setw(10) << "Hi" << "]" << std::endl;

Some examples - Padding

[Hi--------]

Outputs:

#include <iomanip>

std::cout << std::hex << 10; // prints a
std::cout << std::oct << 10; // prints 12
std::cout << std::dec << 10; // prints 10

Some examples - Numeric

Stream Manipulators - Recap

Stream manipulators can be passed into streams to change how they
behave.

They have a variety of uses, and if you’d like to format something
differently, there’s probably a manipulator for it.

You can find a list of the most common ones at
http://www.cplusplus.com/reference/library/manipulators/

http://www.cplusplus.com/reference/library/manipulators/
http://www.cplusplus.com/reference/library/manipulators/

stringstream

Sometimes we want to be able to treat a string like a stream.

Useful scenarios:

● Converting between data types
● Tokenizing a string

stringstream

stringstream

#include <sstream>
Std::string line = "137 2.718 Hello";
std::stringstream stream(line);

int myInt;
double myDouble;
std::string myString;
stream >> myInt >> myDouble >> myString;

std::cout << myInt << std::endl;
std::cout << myDouble << std::endl;
std::cout << myString << std::endl;

Tying it Together

Let’s write the Stanford simpio library!

Simple IO

(OurSimpIO.pro)

Buffering

Next Time
Sequential Containers

