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getLine issue

| am using the function getLine from simpio library
string line = getLine("a)nimate, t)ick, quit? ");

When | run the code it will print the prompt but it will not stop to take an input from the console. | can't figure out why this might be, any thoughts?

@ good question

the students' answer, where students collectively construct a single answer

| have a similar problem of the prompt printing out twice when | use both "getLine()" and "cin".
Should we stick to using only "cin" or only "getLine()" throughout our code?

% good answer

the instructors' answer, where instructors collectively construct a single answer

If you use both getLine() and cin, the problem y'all have will occur. To fix this, just stick to only using the Stanford library functions for input(the ones i

~ An instructor (Marty Stepp) endorsed this answer ~

@ good answer




getline vs >> Bug

What happens if we mix cin and getline? favNum =
fullName =

position
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getline vs >> Bug

What happens if we mix cin and getline? favNum = 1729
fullName = ""
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getline vs >> Bug

We can fix this by consuming the newline character after using cin!

int favNum;
cin >> favNum;

cin >> WwS;

string fullName;
getline (cin, fullName)



Useful Aside






Structs

You can define your own mini-types that bundle multiple
variables together:

int x;
int vy;

|

Useful for Assignment |

b




point {
int x;
int y;
i

point p;
p.x = 12;
p.y = 15;

Structs



Overview of STL



Overview of STL

“As mathematicians learned to lift theorems
into their most general setting, so | wanted to
lift algorithms and data structures”

— Alex Stepanov, inventor of the STL
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Where we are going...

Here is a program that generates a vector with random entries,
sorts it, and prints it, all in one go!

int kNumInts = 200;
std::vector<int> wvec ( ) ;
std: :generate (vec.begin(), vec.end(), rand);
std::sort (vec.begin(), vec.end()):;
std::copy(vec.begin(), vec.end(),
std::ostream iterator<int>(cout, "\n")):;



Sequence Containers



Sequence Containers

Provides access to sequences of elements.
Examples:
® std::vector<T>

® cstd::list<T>

® std::deque<T>



std: :vector<T>



std::vector<T>

A vector represents a sequence of elements of any type.

You specify the type when using the vector:

std::vector<int> veclInt;
std: :vector<string> vecStr;
std: :vector<myStruct> vecStruct;

std::vector<std::vector<string>> vecOfVec;



Summary of std: :vector<T> vs Stanford Vector<T>

What you want to do

Stanford Vector<int>

std: :vector<int>

Create an empty vector

Vector<int> v;

vector<int> v;

Create a vector with n copies of zero

Vector<int> v(n);

vector<int> v(n);

Create a vector with n copies of a value k

Vector<int> v(n, k);

vector<int> v(n, k);

Add k to the end of the vector v.add(k); v.push_back(k);
Clear vector v.clear(); v.clear();
Get the element at index i (verify thatiis in int k = v.get(i); int k = v.at(i);

bounds)

int k = v[i];

Check if the vector is empty

if (v.isEmpty()) ...

if (v.empty()) ...

Replace the element at index i (verify that i is
in bounds)

v.get(i) = k;
v[i] = k;

v.at(i) = k;
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Summary of std: :vector<T> vs Stanford Vector<T>

What you want to do Stanford Vector<int> std: :vector<int>
Create an empty vector Vector<int> v; vector<int> v;
Create a vector with n copies of zero Vector<int> v(n); vector<int> v(n);
Create a vector with n copies of a value k Vector<int> v(n, k); vector<int> v(n, k);
Add k to the end of the vector v.add(k); v.push_back(k);
Clear vector v.clear(); v.clear();
Get the element at index i (verify thatiis in int k = v.get(i); int k = v.at(i);
bounds) int k = v[i];
Check if the vector is empty if (v.isEmpty()) ... if (v.empty()) ...

Replace the element at index i




Some Differences - std: :vector<T> vs Stanford Vector<T>

Get the element at index i // Impossible! int a = x[i];
without bounds checking

Change the element at index i // Impossible! x[1i] = v;
without bounds checking

Add an element to the beginning | // Impossible! (or at // Impossible! (or at
of a vector least slow) least slow)




std::vector<T>

Problem:

Write a program that reads a list of integers and finds the median.

Vector Median

(VecMedian.pro)



std::vector<T>

Some new stuff there;

int kNumInts = 5;
vecsz t = std::vector<int>::size type;

std: :sort (vec.begin(), vec.end());



std::vector<T>

Some new stuff there: This is a promise to the

compiler that this variable

! won’t change.

int kNumInts = 5;

vecsz t = std::vector<int>::size type;

std: :sort (vec.begin(), vec.end());



std::vector<T>

Some new stuff there;

int kNumInts = 5;
vecsz t = std::vectorlint>::size type;

std: :sort (vec.begin(), vec.end());

This let’s us use vecsz € as an alias/synonym for the
type std::vector<int>::size type;




std::vector<T>

Some new stuff there;

int kNumInts = 5;
vecsz t = std::vector<int>::size type;

std: :sort(vec.begin(), vec.end()):

|

This takes a range of the vector and sorts it
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Why the Differences?

Why doesn’t std: :vector bounds check by default?

Hint: Remember our discussion of the philosophy of C++

If you write your program correctly, bounds checking will just
your code down.
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Why is push front slow?

Requires shifting over of the other elements in the vector down
one by one (bad).

lllustration: Say we have a small vector

21l ]s
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Oth index




Why is push front slow?

Suppose push front existed and we used it.
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Need to shift these
elements up to make space
in the Oth position.
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Why is push front slow?

Suppose push front existed and we used it

vec.push front (7/);

Now we can insert the
new element.

Oth index



Why is push front slow?

Suppose push front existed and we used it
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Why is push front slow?
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Why is push front slow?

Let’s get a sense of the difference:

Insertion Speed

(InsertionSpeed.pro)



Why is push front slow?
The results:

vector push_back vs push_front

push_back

— PUSh_front
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Why is push front slow?

A vector is the prime tool of choice in most applications!

e Fast
e Lightweight
e Intuitive

However, we just saw vectors only grow efficiently in one direction.

Sometimes it is useful to be able to push front quickly!

C++ has a solution!




std: :deque<T>



std: :deque<T>

A deque (pronounced “deck”)is a double ended queue.

Can do everything a vector can do
and also...

Unlike a vector, it is possible (and fast) to push front and
pop front.



std: :deque<T>

We can see the efficiency of push front witha std: :deque

Deque Speed

(DequeSpeed.pro)



: tdeque<T>

The results:

deque push_back vs push_front
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The results

Same scale as
previous graph
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: tdeque<T>

deque push_back vs push_front
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: tdeque<T>

The results:

deque push_back vs push_front

push_back

— PUSh_front
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lines!
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ow does std: :deque<T> work?

There is no single specific implementation of a deque, but one
common one might look like this:

NULL
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ow does std: :deque<T> work?

There is no single specific implementation of a deque, but one
common one might look like this:
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Wait a minute...



Question

If deque can do everything a vector can do and also has a fast
push front..

Why use a vector at all?



Downsides of std: :deque<T>

Deques support fast push front operations.

However, for other common operations like element access,
vector will always outperform a deque.

Vector vs Deque

(VecDegSpeed.pro)



Downsides of : :deque<

The results:

vector vs deque Acces




Which to Use?

“vector is the type of sequence that should be used by default...
deque is the data structure of choice when most insertions and
deletions take place at the beginning or at the end of the
sequence.”

— C++|SO Standard (section 23.1.1.2):



Questions
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Container Adapters

Recall stacks and queues:

stack
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Container Adapters

Recall stacks and queues:

stack

pop_front

d

queue

back




Container Adapters

Recall stacks and queues:

back

stack queue



Container Adapters

How can we implement stack and queue using the containers we have?

Stack:
Just limit the functionality of a vector/deque to only allow push back and
pop back.

Queue:
Just limit the functionality of a deque to only allow push back and
pop front.

Plus only allow access to top element




Container Adapters

For this reason, stacks and queues are known as container adapters.

std::Stac

Defined in header <stack>
template<

class T,

class Container = std::deque<T>
> class stack;

The std: :stack class is a container adapter that gives the programmer the functionality of a stack - specifically, a
FILO (first-in, last-out) data structure.

The class template acts as a wrapper to tl nderlying container - only a specific set of functions is provided. The
stack pushes and pops the element from the back of the underlying container, known as the top of the stack.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container: :value_type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
ual semantics:

 back()

» push_back()

« pop_back()

The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:quUeEUEe

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters
T - The type of the stored elements. The behavior is undefined if T is not the same type as
Container: :value_type. (since C++17)

Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
» push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.
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Container Adapters

For this reason, stacks and queues are known as container adapters.

std::Stac

Defined in header <stack>
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Container - The type of the underlying container to use to store the elements. The container must satisfy the
requirements of SequenceContainer. Additionally, it must provide the following functions with the
ual semantics:

 back()

» push_back()

« pop_back()

The standard containers std: :vector, std: :deque and std: : list satisfy these requirements.

std:quUeEUEe

Defined in header <queue>

template<

class T,

class Container = std::deque<T>
> class queue;

The std: :queue class is a container adapter that gives the programmer the functionality of a queue - specifically, a
FIFO (first-in, first-out) data structure.

The class template acts as a wrapper to the underlying container - only a specific set of functions is provided. The
queue pushes the elements on the back of the underlying container and pops them from the front.

Template parameters

T - The type of the stored elements. The behavior is undefined if T is not the same type as

Container -
requirements of SequenceContainer. Additionally, it must provide the following functions with the
usual semantics:

e back()
o front()
» push_back()
« pop_front()
The standard containers std: :deque and std: : list satisfy these requirements.




Next Time

Associative Containers and lterators






