
Sequential Containers
Ali Malik

malikali@stanford.edu

mailto:malikali@stanford.edu

Game Plan

Recap

Overview of STL

Sequence Containers

std::vector

std::deque

Container Adapters

Announcements

Recap

What happens if we mix cin and getline?

getline vs >> Bug

1 7 2 9 \n

position

favNum =
fullName =

What happens if we mix cin and getline?

getline vs >> Bug

1 7 2 9 \n

position

favNum =
fullName =

int favNum;
cin >> favNum;

What happens if we mix cin and getline?

getline vs >> Bug

1 7 2 9 \n

position

favNum =
fullName =

int favNum;
cin >> favNum;

What happens if we mix cin and getline?

getline vs >> Bug

1 7 2 9 \n

position

favNum = 1729
fullName =

What happens if we mix cin and getline?

getline vs >> Bug

1 7 2 9 \n

position

string fullName;
getline(cin, fullName);

favNum = 1729
fullName =

What happens if we mix cin and getline?

getline vs >> Bug

1 7 2 9 \n

position

string fullName;
getline(cin, fullName);

favNum = 1729
fullName =

What happens if we mix cin and getline?

getline vs >> Bug

1 7 2 9 \n

position

favNum = 1729
fullName = ""

We can fix this by consuming the newline character after using cin!

int favNum;
cin >> favNum;

cin >> ws; // extracts as many whitespace chars as possible
 from current position in stream

string fullName;
getline(cin, fullName); // no residual newline char in stream

getline vs >> Bug

Useful Aside

You can define your own mini-types that bundle multiple
variables together:

struct point {
int x;
int y;

};

Structs

Useful for Assignment 1

struct point {
int x;
int y;

};

point p;
p.x = 12;
p.y = 15;

Structs

Overview of STL

“As mathematicians learned to lift theorems
into their most general setting, so I wanted to
lift algorithms and data structures”

－ Alex Stepanov, inventor of the STL

Overview of STL

Overview of STL

Allocators Containers

Iterators

Algorithms Functors/Lambdas

Adapters

Overview of STL

Allocators Containers

Iterators

Algorithms Functors/Lambdas

Adapters

const int kNumInts = 200;
std::vector<int> vec(kNumInts);
std::generate(vec.begin(), vec.end(), rand);
std::sort(vec.begin(), vec.end());

Where we are going...

Here is a program that generates a vector with random entries,
sorts it, and prints it, all in one go!

std::copy(vec.begin(), vec.end(),
std::ostream_iterator<int>(cout, "\n"));

Sequence Containers

Provides access to sequences of elements.

Examples:

● std::vector<T>

● std::list<T>

● std::deque<T>

Sequence Containers

std::vector<T>

A vector represents a sequence of elements of any type.

You specify the type when using the vector:

std::vector<int> vecInt; // vector of ints

std::vector<string> vecStr; // vector of string

std::vector<myStruct> vecStruct; // vector of myStructs

std::vector<std::vector<string>> vecOfVec; // vector of

vector<string>

std::vector<T>

Summary of std::vector<T> vs Stanford Vector<T>

What you want to do Stanford Vector<int> std::vector<int>

Create an empty vector Vector<int> v; vector<int> v;

Create a vector with n copies of zero Vector<int> v(n); vector<int> v(n);

Create a vector with n copies of a value k Vector<int> v(n, k); vector<int> v(n, k);

Add k to the end of the vector v.add(k); v.push_back(k);

Clear vector v.clear(); v.clear();

Get the element at index i (verify that i is in
bounds)

int k = v.get(i);
int k = v[i];

int k = v.at(i);

Check if the vector is empty if (v.isEmpty()) ... if (v.empty()) ...

Replace the element at index i (verify that i is
in bounds)

v.get(i) = k;
v[i] = k;

v.at(i) = k;

Summary of std::vector<T> vs Stanford Vector<T>

What you want to do Stanford Vector<int> std::vector<int>

Create an empty vector Vector<int> v; vector<int> v;

Create a vector with n copies of zero Vector<int> v(n); vector<int> v(n);

Create a vector with n copies of a value k Vector<int> v(n, k); vector<int> v(n, k);

Add k to the end of the vector v.add(k); v.push_back(k);

Clear vector v.clear(); v.clear();

Get the element at index i (verify that i is in
bounds)

int k = v.get(i);
int k = v[i];

int k = v.at(i);

Check if the vector is empty if (v.isEmpty()) ... if (v.empty()) ...

Replace the element at index i (verify that i is
in bounds)

v.get(i) = k;
v[i] = k;

v.at(i) = k;

Summary of std::vector<T> vs Stanford Vector<T>

What you want to do Stanford Vector<int> std::vector<int>

Create an empty vector Vector<int> v; vector<int> v;

Create a vector with n copies of zero Vector<int> v(n); vector<int> v(n);

Create a vector with n copies of a value k Vector<int> v(n, k); vector<int> v(n, k);

Add k to the end of the vector v.add(k); v.push_back(k);

Clear vector v.clear(); v.clear();

Get the element at index i (verify that i is in
bounds)

int k = v.get(i);
int k = v[i];

int k = v.at(i);

Check if the vector is empty if (v.isEmpty()) ... if (v.empty()) ...

Replace the element at index i (verify that i is
in bounds)

v.get(i) = k;
v[i] = k;

v.at(i) = k;

Summary of std::vector<T> vs Stanford Vector<T>

What you want to do Stanford Vector<int> std::vector<int>

Create an empty vector Vector<int> v; vector<int> v;

Create a vector with n copies of zero Vector<int> v(n); vector<int> v(n);

Create a vector with n copies of a value k Vector<int> v(n, k); vector<int> v(n, k);

Add k to the end of the vector v.add(k); v.push_back(k);

Clear vector v.clear(); v.clear();

Get the element at index i (verify that i is in
bounds)

int k = v.get(i);
int k = v[i];

int k = v.at(i);

Check if the vector is empty if (v.isEmpty()) ... if (v.empty()) ...

Replace the element at index i (verify that i is
in bounds)

v.get(i) = k;
v[i] = k;

v.at(i) = k;

Some Differences - std::vector<T> vs Stanford Vector<T>

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at index i
without bounds checking

// Impossible! x[i] = v;

Add an element to the beginning
of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

Apply a function to each element
in x

x.mapAll(fn) // We'll talk about this
in another lecture...

Concatenate vectors v1 and v2 v1 += v2; // We'll talk about this
in another lecture...

Problem:

Write a program that reads a list of integers and finds the median.

Vector Median

(VecMedian.pro)

std::vector<T>

Some new stuff there:

const int kNumInts = 5;

using vecsz_t = std::vector<int>::size_type;

std::sort(vec.begin(), vec.end());

std::vector<T>

Some new stuff there:

const int kNumInts = 5;

using vecsz_t = std::vector<int>::size_type;

std::sort(vec.begin(), vec.end());

std::vector<T>

This is a promise to the
compiler that this variable
won’t change.

Some new stuff there:

const int kNumInts = 5;

using vecsz_t = std::vector<int>::size_type;

std::sort(vec.begin(), vec.end());

std::vector<T>

This let’s us use vecsz_t as an alias/synonym for the
type std::vector<int>::size_type;

Some new stuff there:

const int kNumInts = 5;

using vecsz_t = std::vector<int>::size_type;

std::sort(vec.begin(), vec.end());

std::vector<T>

This takes a range of the vector and sorts it

Some Differences - std::vector<T> vs Stanford Vector<T>

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at index i
without bounds checking

// Impossible! x[i] = v;

Add an element to the beginning
of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

Apply a function to each element
in x

x.mapAll(fn) // We'll talk about this
in another lecture...

Concatenate vectors v1 and v2 v1 += v2; // We'll talk about this
in another lecture...

Some Differences - std::vector<T> vs Stanford Vector<T>

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at index i
without bounds checking

// Impossible! x[i] = v;

Add an element to the beginning
of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

Apply a function to each element
in x

x.mapAll(fn) // We'll talk about this
in another lecture...

Concatenate vectors v1 and v2 v1 += v2; // We'll talk about this
in another lecture...

Why these differences?

Some Differences - std::vector<T> vs Stanford Vector<T>

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at index i
without bounds checking

// Impossible! x[i] = v;

Add an element to the beginning
of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

Apply a function to each element
in x

x.mapAll(fn) // We'll talk about this
in another lecture...

Concatenate vectors v1 and v2 v1 += v2; // We'll talk about this
in another lecture...

Why these differences?

Some Differences - std::vector<T> vs Stanford Vector<T>

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at index i
without bounds checking

// Impossible! x[i] = v;

Add an element to the beginning
of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

Apply a function to each element
in x

x.mapAll(fn) // We'll talk about this
in another lecture...

Concatenate vectors v1 and v2 v1 += v2; // We'll talk about this
in another lecture...

Why these differences?

Why doesn’t std::vector bounds check by default?

Hint: Remember our discussion of the philosophy of C++

If you write your program correctly, bounds checking will just
slow your code down.

Why the Differences?

Some Differences - std::vector<T> vs Stanford Vector<T>

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at index i
without bounds checking

// Impossible! x[i] = v;

Add an element to the beginning
of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

Apply a function to each element
in x

x.mapAll(fn) // We'll talk about this
in another lecture...

Concatenate vectors v1 and v2 v1 += v2; // We'll talk about this
in another lecture...

Why these differences?

Some Differences - std::vector<T> vs Stanford Vector<T>

Get the element at index i
without bounds checking

// Impossible! int a = x[i];

Change the element at index i
without bounds checking

// Impossible! x[i] = v;

Add an element to the beginning
of a vector

// Impossible! (or at
least slow)

// Impossible! (or at
least slow)

Apply a function to each element
in x

x.mapAll(fn) // We'll talk about this
in another lecture...

Concatenate vectors v1 and v2 v1 += v2; // We'll talk about this
in another lecture...

Why these differences?

Requires shifting over of the other elements in the vector down
one by one (bad).

Illustration: Say we have a small vector

Why is push_front slow?

3 1 4 1 5

0th index

Suppose push_front existed and we used it.

Why is push_front slow?

3 1 4 1 5

0th index

Suppose push_front existed and we used it.

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Suppose push_front existed and we used it.

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Need to shift these
elements up to make space
in the 0th position.

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Suppose push_front existed and we used it

Why is push_front slow?

3 1 4 1 5

0th index

7
vec.push_front(7);

Now we can insert the
new element.

Suppose push_front existed and we used it

Why is push_front slow?

7 3 1 4 1 5

0th index

vec.push_front(7);

...

Why is push_front slow?

7 3 1 4 1 5

0th index

Let’s get a sense of the difference:

Insertion Speed

(InsertionSpeed.pro)

Why is push_front slow?

The results:

Why is push_front slow?

A vector is the prime tool of choice in most applications!
● Fast
● Lightweight
● Intuitive

However, we just saw vectors only grow efficiently in one direction.

Sometimes it is useful to be able to push_front quickly!

Why is push_front slow?

C++ has a solution!

std::deque<T>

A deque (pronounced “deck”) is a double ended queue.

Can do everything a vector can do

and also…

Unlike a vector, it is possible (and fast) to push_front and
pop_front.

std::deque<T>

We can see the efficiency of push_front with a std::deque

Deque Speed

(DequeSpeed.pro)

std::deque<T>

The results:

std::deque<T>

The results:

std::deque<T>

Same scale as
previous graph

The results:

std::deque<T>

There are the
lines!

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5

4 1 5 9

3 1

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5

4 1 5 9

3 1

deq.push_front(7);

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5

4 1 5 9

3 1

deq.push_front(7);

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5

4 1 5 9

7 3 1

deq.push_front(7);

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5

4 1 5 9

7 3 1

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5

4 1 5 9

7 3 1

deq.push_back(3);

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5

4 1 5 9

7 3 1

deq.push_back(3);

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

deq.push_back(3);

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

NULL

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

deq.push_back(5);

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

deq.push_back(5);

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

deq.push_back(5);

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

deq.push_back(5);

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

deq.push_back(5);

5

There is no single specific implementation of a deque, but one
common one might look like this:

How does std::deque<T> work?

2 6 5 3

4 1 5 9

7 3 1

5

Wait a minute...

If deque can do everything a vector can do and also has a fast
push_front...

Why use a vector at all?

Question

Deques support fast push_front operations.

However, for other common operations like element access,
vector will always outperform a deque.

Vector vs Deque

(VecDeqSpeed.pro)

Downsides of std::deque<T>

The results:

Downsides of std::deque<T>

“vector is the type of sequence that should be used by default...
deque is the data structure of choice when most insertions and
deletions take place at the beginning or at the end of the
sequence.”

－ C++ ISO Standard (section 23.1.1.2):

Which to Use?

Questions

Container Adapters

Recall stacks and queues:

Container Adapters

stack

13

41

12

Recall stacks and queues:

Container Adapters

stack

5

13

41

12

push

Recall stacks and queues:

Container Adapters

stack

5

13

41

12

Recall stacks and queues:

Container Adapters

stack

13

41

12

pop

Recall stacks and queues:

Container Adapters

stack

13

41

12

Recall stacks and queues:

Container Adapters

stack

13

41

12

queue

9

16

11

back

Recall stacks and queues:

Container Adapters

stack

13

41

12

queue

9

16

11

5
back

push_back

Recall stacks and queues:

Container Adapters

stack

13

41

12

queue

9

16

11

5
back

Recall stacks and queues:

Container Adapters

stack

13

41

12

queue

16

11

5
back

pop_front

Recall stacks and queues:

Container Adapters

stack

13

41

12

queue

16

11

5
back

How can we implement stack and queue using the containers we have?

Stack:
Just limit the functionality of a vector/deque to only allow push_back and
pop_back.

Queue:
Just limit the functionality of a deque to only allow push_back and
pop_front.

Container Adapters

Plus only allow access to top element

Container Adapters

For this reason, stacks and queues are known as container adapters.

Container Adapters

For this reason, stacks and queues are known as container adapters.

Container Adapters

For this reason, stacks and queues are known as container adapters.

Next Time
Associative Containers and Iterators

