Algorithms

Ali Malik

malikali@stanford.edu

mailto:malikali@stanford.edu

Game Plan

Recap

lterator Types

O

Algorithms

lterator Adapters

Recap

is a C++11 feature that uses type deduction.

Asks the compiler to figure out the type for you.

When to use it?
e Use it whenever the type is obvious (e.g iterators)

e |n places where only the compiler knows the type (yes these
exist)

How can we clean
this up better?

Writing iterator types can be unsightly.

Consider a map of deque of strings to vector of strings: The
keyword!
map<deque<string>, vector<string>> myMap;
(iter = myMap.begin(); iter !'= myMap.end(); ++iter) {

doSomething (* (iter) .first, *(iter) .second);

Range Based Loop

A range based loop is (more or less) a shorthand for iterator code:

map<string, int> myMap;
(thing : myMap) {
doSomething (thing.first, thing.second);

map<string, int> myMap;
(iter = myMap. begin(); iter != myMap.end(); ++iter) {
thing = *iter;
doSomething (thing.first, thing.second);

Templates

Templates are a blueprint of a function that let you use the same
function for a variety of types:

template <typename T>
T min(T a, T b) {

(a < b) 2 a : b;
}

int a = 3, b = 9;

int ¢ = min<int>(a, b):;

Template
Instantiation

template <typename T>
T min(T a, T b) { D ———
(a < b) 2 a : b;

(T =int)

}

ow does this work?

| don’t have a min<int> :(

But | know how to one!

int min<int>(int a,
(a < Db)

)
? a

}

int b)
: by

{

lterator Types

lterator Types

So far we have only really incremented iterators.

But for some containers, we should be able to jump anywhere:

std::vector<int> v (10);

mid = v.begin() + v.size()/2;

std::deque<int> d(13);

some iter = d.begin() + 3;

lterator Types

So far we have only really incremented iterators.

But for some containers, we should be able to jump anywhere:

std::vector<int> v (10); Sounds right!

mid = v.begin() + v.size()/2;

std::deque<int> d(13);

some iter = d.begin() + 3;

lterator Types

But what about std: :1ist (doubly linked list)?

stdrslist<int> myList (10);
some 1ter = myList.begin() + 3;

lterator Types

But what about std: :1ist (doubly linked list)?

stdrslist<int> myList (10);

vy

91 v int main(Q) {

92

93 std::list<int> mylList(10);
@ 9% some_iter = myList.begin() + 3;

95 9; il
Issues o () A ! A
@ invalid operands to binary expression ('iterator' (aka '_list_iterator<int, void *>') and 'int') main.cpp 9

auto some_iter = mylList.begin() + 3;

[Users/alimalik/Desktop/Programs/C++/IterAlgorithms/main.cpp

A N e e A S e N i e M e it T e i N N S e e i N

lterator Types

But what about std: :1ist (doubly linked list)?

What'’s going on

stdrslist<int> myList (10); here?
17}
91 v int main(Q) {
92
93 std::list<int> myList(10);
@ 9% me_iter = myList.begin() + 3;
95 @ |
Issues o () A Y. A
@ invalid operands to binary expression (‘iterator' (aka '__list_iterator<int, void *>') and 'int') main.cpp o
auto some_iter = mylList.begin() 1— 3%

[Users/alimalik/Desktop/Programs/C++/IterAlgorithms/main.cpp

A N e e A S e N i e M e it T e i N N S e e i N e a e Aar

lterator Types

There are 5 different types of iterators!

Input

Output

Forward
Bidirectional
Random access

s WN o

lterator Types

There are 5 different types of iterators!

1. Input
2. Output
3. Forward
4. Bidirectional
5. Random access
Input

Output

S — Forward ——

Bidirectional

Random Access

lterator Types - Similarities

All iterators share a few common traits:

e Can be created from existing iterator
e Can be advanced using

e Can be compared with and

Input

C— Forward <= | Bidirectional | e=m| Random Access

Output

Input Iterators

For sequential, single-pass input.

Read only i.e. can only be dereferenced on right side of expression.

vector<int> v = ...

vector<int>::iterator itr = v.begin();
int val = *itr;
Input
C— Forward <= | Bidirectional | e==| Random Access
Output

Output lterators

For sequential, single-pass

Write only i.e. can only be dereferenced on side of expression.

vector<int> v = ...

vector<int>::iterator itr = v.begin();
*itr = 12;
Input
C— Forward <= | Bidirectional | e==| Random Access
Output

Forward lterators

Same as input/output iterators except can make multiple passes.

Can read from and write to (if not iterator).

vector<int> v = ...

vector<int>::iterator itr = v.begin();
int val = *itr;
int val2 = *itr;
Input
C— Forward <= | Bidirectional | e==| Random Access
Output

Bidirectional lterators

Same as forward iterators except can also go backwards with.
decrement operator

Input

Output

vector<int> v = ...

vector<int>::iterator itr = v.begin();
++itr;
int val = *itr;
itr;
int val2 = *itr;
S — Forward <= | Bidirectional

Random Access

Random Access lterators

Same as bidirectional iterators except can be incremented or
decremented by arbitrary amounts using + and

vector<int> v = ...

vector<int>::iterator itr = v.begin();
int val = *itr;
itr = itr + 3;
int val2 = *itr;
Input
C— Forward <= | Bidirectional | e=m| Random Access
Output

Algorithms

Allocators

Overview of STL

|

Iterators

|

<+ | Functors/Lambdas

|

<4 | Adapters

~

You are
here!

Allocators

Overview of STL

|

Iterators

|

<+ | Functors/Lambdas

|

<4 | Adapters

~

Abstraction in the STL

Abstractions allow us to express the general structure of a problem
instead of the particulars of its

If we solve problems in a general setting, we solve all specific instances
of the problem!

Abstraction in the STL

We began by talking about basic types:
® char
e int
e double

Each type was conceptually a “single value”.

Abstraction in the STL

Basic Types

Abstraction in the STL

Many programs require a collection of basic types:
e Avector<int> representing student ages

® Amap< , int> of names to phone numbers

Containers allow a programer to use the same collection, regardless of
the underlying type.

Abstraction in the STL

{

Basic Types

Abstraction in the STL

The same <vector> implementation can be used for any basic type.

Containers let us perform operations on basic types, regardless of what
the basic type is.

Can we perform operations on containers
regardless of what the container is!?

Abstraction in the STL

'terators allow us to abstract away from the being used.

Similar to how allow us to abstract away from the basic type
being used.

Abstraction in the STL

|terators

Containers

t
T B Tes

Basic Types

Abstraction in the STL

Operations like sorting, searching, filtering, partitioning etc. can be
written to work with almost any container.

If we write algorithms that operate on iterators, then they will be
applicable in the setting.

Abstraction in the STL

Algorithms

|terators

Containers

t
t
T B Tes

Basic Types

Algorithms

The STL contains pre written algorithms that operate on
Doing so lets them work on many types of containers.
Uses determined by types of iterators.

Rely heavily on

Algorithms

Let’s have some fun with algorithms:

Algorithm Fun
(AlgorithmFun . pro)

In depth - std: :copy

Let’s look atthe std: :copy algorithm to get a better understanding of

algorithms and iterators:

vector<int> v {561, 1105, 1729, 2465};
vector<int> vCopy(v.size())

std::copy(v.begin(), v.end(), vCopy.begin());

In depth - 1 1 COpY

vcopy:

In depth - std: :copy

vcopy:

s o o o

In depth - std: :copy

vcopy:

In depth - std: :copy

vcopy:

In depth - std: :copy

vcopy:

In depth - std: :copy

What happens if there isn’t enough space in the destination?

vector<int> v {561, 1105, 1729, 2465};
vector<int> vCopy(v.size())

std::copy(v.begin(), v.end(), vCopy.begin());

In depth - std: :copy

What happens if there isn’t enough space in the destination?

vector<int> v {561, 1105, 1729, 2465};
vector<int> vCopy(v.size())

std::copy(v.begin(), v.end(), vCopy.begin());

In depth - std: :copy

What happens if there isn’t enough space in the destination?

vector<int> v {bol, 1105, 1729, 2465};
vector<int> vCopy (2) ;

std::copy(v.begin(), v.end(), vCopy.begin());

In depth - 1 1 COpY

vcopy:

In depth - std: :copy

vcopy:

In depth - std: :copy

vcopy:

561 1105

In depth - 1 1 COpY

vcopy:

561 1105

In depth - std: :copy

vcopy: I

561 1105

In depth - 1 1 COpY

We won’t always know how much space will be needed for the
destination?

How can we solve this problem?

We want to be able to copy into a collection by “inserting” into it, rather
than making space for it first.

C++ has a solution!

lterator Adapters

lterator Adapters

Sometimes we need to form “weird” iterators:

e |terating over would be pretty cool
e Having an iterator that could ” into a collection would be
pretty cool

This is where iterator adaptors come in.

lterator Adapters

Act like iterators:

e Can be dereferenced with

e Can be advanced with

However, they don’t actually point to elements of a container.

std::ostream 1lterator

Look like output iterators

e Can be dereferenced with

e Can be advanced with

Whenever you dereference a std: :ostream iterator and assign a
value to it, the value is printed to a specified std: :ostream.

std::ostream 1lterator

Let’s play around with iterator adapters:

lterAdapters
(terAdapters.pro)

std::ostream 1lterator

Example:

1A 1A)

std::ostream iterator<int> itr(cout, ",
*itr = 3;

++1tr;

*itr = 1729;

++1tr;

*itr = 13;

std::ostream 1lterator

Looks like you’re manipulating contents of a container.

But really you're writing characters to the cout stream.

std::ostream 1lterator

Looks like you're manipulating contents of a container.

But really you're writing characters to the cout stream.

::0stream 1terator

What is this even useful for?

You can treat streams like iterators, so you can use algorithms with
them!

std::ostream 1lterator

Here’s a cool application of this. This code prints the vector:

std::vector<int> v{3, 1, 4, 1, 5};
std::copy(v.begin(), v.end(),
std::ostream iterator<int>(cout, ", "))

lterator Adapters
Insert Iterators

std::back 1nserter

Let’s get back to the original problem.

In depth - std: :copy

vcopy: I

561 1105

Insert lterators

Let’s get back to the original problem.

We want to be able to copy into a collection by “inserting” into it, rather
than making space for it first.

Insert lterators

The standard library provides insert iterators (std: :inserter,

std::back inserter,std::front inserter).

Writing to these iterators inserts the value into a container using one of
insert, push back, orpush front.

Insert lterators

Let’s play around with iterator adapters:

lterAdapters
(terAdapters.pro)

Insert lterators

Example:

std::vector<int> v;
itr = std::back inserter (v);
*itr = 1729;
++itr;
*itr = 13;
++itr;

*1tr = 3;

Insert lterators

Now we can solve the coyote problem:

vector<int> v {561, 1105, 1729, 2465};
vector<int> vCopy(v.size());

std::copy(v.begin(), v.end(), vCopy.begin());

Insert lterators

Now we can solve the coyote problem:

vector<int> v {561, 1105, 1729, 2465}%};
vector<int> vCopy(v.size());

std::copy(v.begin(), v.end(), vCopy.begin());

Insert lterators

Now we can solve the coyote problem:

vector<int> v {561, 1105, 1729, 2465};
vector<int> vCopy;

std::copy(v.begin(), v.end(), vCopy.begin());

Insert lterators

Now we can solve the coyote problem:

vector<int> v {561, 1105, 1729, 2465};

| Start with empty
vector<int> vCopy; «

vector

std::copy(v.begin(), v.end(), vCopy.begin());

Insert lterators

Now we can solve the coyote problem:

vector<int> v {561, 1105, 1729, 2465};
vector<int> vCopy;

std::copy(v.begin(), v.end(), vCopy.begin());

Insert lterators

Now we can solve the coyote problem:

vector<int> v {561, 1105, 1729, 2465};
vector<int> vCopy;

std::icopy(v.begin(), v.end(), vCopy.begin());

Insert lterators

Now we can solve the coyote problem:

vector<int> v {561, 1105, 1729, 2465},
vector<int> vCopy;

std::icopy(v.begin(), v.end(),
std::back inserter (vCopy));

In depth - 1 1 COpY

vcopy:

In depth - std: :copy

vcopy:

561

In depth - std: :copy

vcopy:

561 1105

In depth - std: :copy

vcopy:

561 1105 1729

In depth - std: :copy

vcopy:

Closing Notes

There are many algorithms we didn’t cover today. Here is a full list of

them.
We will be using algorithms heavily for the next assignment.

The course reader does a really good job on this topic, so please check

it out!

http://en.cppreference.com/w/cpp/algorithm

Next Time

Stylometry

