
Multithreading

CS 106L Winter 2020 – Avery Wang and Anna Zeng

Game Plan

• Finishing Up Smart
Pointers

• Announcements
• Multithreading

17 November 2019 2

Recap

18 November 2019 3

18 November 2019

Problem: We can’t guarantee this function will
not have a memory leak.

4

string EvaluateSalaryAndReturnName(int idNumber) {
 Employee* e = new Employee(idNumber);

 if (e.Title() == "CEO" || e.Salary() > 100000) {
 cout << e.First() << " "
 << e.Last() << " is overpaid" << endl;
 }
 auto result = e.First() + " " + e.Last();

 delete result;
 return result;
}

How do we guarantee classes
release their resources?

Regardless of exceptions!

17 November 2019 5

18 November 2019

RAII!

6

Acquire resources in the constructor,
release in the destructor.

Use a wrapper class that handles all the resource
management for you!

18 November 2019

We previously saw how to make file reading
RAII compliant using a wrapper class:

7

18 November 2019

We previously saw how to make file reading
RAII compliant using a wrapper class:

8

void printFile () {
 ifstream input();
 input.open(“hamlet.txt”);

 string line;
 while (getline(input, line)) {
 cout << line << endl;
 }

 input.close();
}

void printFile () {
 ifstream input(“hamlet.txt”);

 // read file

 // no close call needed!
}
// stream destructor
// releases access to file

18 November 2019

We previously saw how to make locks
RAII compliant using a wrapper class:

9

18 November 2019

We previously saw how to make locks
RAII compliant using a wrapper class:

10

void cleanDatabase (mutex& dbLock,
map<int, int>& database) {

 lock_guard<mutex> lg(databaseLock);

 // other threads will not modify database
 // modify the database
 // if exception thrown, that’s fine!

 // no release call needed
} // lock always unlocked when function exits.

void cleanDatabase (mutex& dbLock,
map<int, int>& database) {

 databaseLock.lock();

 // other threads will not modify database
 // modify the database
 // if exception, mutex never unlocked!

 databaseLock.unlock();
}

18 November 2019

We previously saw how to make pointers
RAII compliant using a wrapper class:

11

18 November 2019

We previously saw how to make pointers
RAII compliant using a wrapper class:

12

void rawPtrFn () {
 std::unique_ptr<Node> n(new Node);
 // do some stuff with n

} // Freed!

void rawPtrFn () {
 Node* n = new Node;
 // do some stuff with n…
 delete n;
}

18 November 2019

We previously saw how to make pointers
RAII compliant using a wrapper class:

13

void rawPtrFn () {
 std::unique_ptr<Node> n(new Node);
 // do some stuff with n

} // Freed!

void rawPtrFn () {
 Node* n = new Node;
 // do some stuff with n…
 delete n;
}

void rawPtrFn () {
 std::shared_ptr<Node> n(new Node);
 // do some stuff with n

} // Freed!

18 November 2019

Let’s take a closer look at how we declared a
new smart pointer:

14

void rawPtrFn () {
 std::unique_ptr<Node> n(new Node);
 // do some stuff with n

} // Freed!

void rawPtrFn () {
 Node* n = new Node;
 // do some stuff with n…
 delete n;
}

void rawPtrFn () {
 std::shared_ptr<Node> n(new Node);
 // do some stuff with n

} // Freed!

18 November 2019

Let’s take a closer look at how we declared a
new smart pointer:

15

void rawPtrFn () {
 std::unique_ptr<Node> n(new Node);
 // do some stuff with n

} // Freed!

void rawPtrFn () {
 Node* n = new Node;
 // do some stuff with n…
 delete n;
}

void rawPtrFn () {
 std::shared_ptr<Node> n(new Node);
 // do some stuff with n

} // Freed!

Example
Implement our own RAII-compliant pointer!

16

Smart Pointer Creation
It’s trickier than you might think!

18 November 2019 17

17 November 2019

C++ has two main built-in smart pointers:

18

std::unique_ptr

std::shared_ptr

17 November 2019

C++ has two main built-in smart pointers:

19

std::unique_ptr<Node> n(new Node);

std::shared_ptr<Node> n(new Node);

17 November 2019

C++ also has built-in smart pointer creators!

20

std::unique_ptr<Node> n(new Node);

std::shared_ptr<Node> n(new Node);

17 November 2019

C++ also has built-in smart pointer creators!

21

std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n =

std::make_unique<Node>();

std::shared_ptr<Node> n(new Node);

17 November 2019

C++ also has built-in smart pointer creators!

22

std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n =

std::make_unique<Node>();

std::shared_ptr<Node> n(new Node);
std::shared_ptr<Node> n =

std::make_shared<Node>();

17 November 2019

C++ also has built-in smart pointer creators!

23

std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n =

std::make_unique<Node>();

17 November 2019

C++ also has built-in smart pointer creators!

24

std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n =

std::make_unique<Node>();

Which is better to use?

17 November 2019

Which is better to use?

25

17 November 2019

Which is better to use?

26

3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

17 November 2019

Which is better to use?

27

3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f(expr1, expr2);

17 November 2019

Which is better to use?

28

3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f(expr1, expr2);
f(g(expr1), h(expr2));

17 November 2019

Which is better to use?

29

3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f(expr1, expr2);
f(g(expr1), h(expr2));

f(std::unique_ptr<T1>{ new T1 }, std::unique_ptr<T2>{ new T2 });

17 November 2019

Which is better to use?

30

3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f(expr1, expr2);
f(g(expr1), h(expr2));

f(std::unique_ptr<T1>{ new T1 }, std::unique_ptr<T2>{ new T2 });

What might go wrong here?

17 November 2019

Which is better to use?

31

3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f(expr1, expr2);
f(g(expr1), h(expr2));

f(std::unique_ptr<T1>{ new T1 }, std::unique_ptr<T2>{ new T2 });
f(std::make_unique<T1>(), std::make_unique<T2>());

17 November 2019

Which is better to use?

32

3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

Note: The last rule has now been changed in
C++17!

But we still prefer the wrapper functions -
make_shared has some performance benefits, etc.

17 November 2019

C++ also has built-in smart pointer creators!

33

std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n =

std::make_unique<Node>();

Which is better to use?

17 November 2019

C++ also has built-in smart pointer creators!

34

std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n =

std::make_unique<Node>();

Which is better to use?

Always use std::make_unique<Node>()!

18 November 2019

So, coming full circle:

35

18 November 2019

So, coming full circle:

36

In modern C++, we pretty much never
use new and delete!

Announcements

18 November 2019 37

17 November 2019

Announcements

38

● Reminder to fill out the form for final lecture!
○ Also, come to final lecture to be part of our EOQ selfie!

● Assignment 2 grades will be coming out tomorrow

● Assignment 3 due this Friday, 3/6, 11:59 pm

Let’s Talk About...

18 November 2019 39

...Multithreading!

18 November 2019 40

What is a thread?

4118 November 2019

What is a thread?

42

Code is usually sequential.

18 November 2019

What is a thread?

43

Code is usually sequential.

Threads are ways to parallelise execution.

18 November 2019

What is a thread?

4418 November 2019

What is a thread?

4518 November 2019

What is a thread?

4618 November 2019

What is a thread?

4718 November 2019

What is a thread?

4818 November 2019

What is a thread?

4918 November 2019

Set a = 2, b = 1

What is a thread?

5018 November 2019

Set a = 2, b = 1

a = 5b += a

What is a thread?

5118 November 2019

Set a = 2, b = 1

a = 5b += a

b = ???

This is known as a data race!

5218 November 2019

Set a = 2, b = 1

a = 5b += a

b = ???

18 November 2019

We’ve already seen locks with RAII!

53

void cleanDatabase (mutex& dbLock,
map<int, int>& database) {

 lock_guard<mutex> lg(databaseLock);

 // other threads will not modify database
 // modify the database
 // if exception thrown, that’s fine!

 // no release call needed
} // lock always unlocked when function exits.

void cleanDatabase (mutex& dbLock,
map<int, int>& database) {

 databaseLock.lock();

 // other threads will not modify database
 // modify the database
 // if exception, mutex never unlocked!

 databaseLock.unlock();
}

Return of the STL!

5418 November 2019

http://www.cplusplus.com/reference/multithreading/

http://www.cplusplus.com/reference/multithreading/

Things to Take Away:

55

- Use atomic types if doing multithreading!
- std::lock_guard vs. std::unique_lock
- 3 types of “locks”/mutexes: normal, timed, recursive
- Condition variables allow cross-thread communication

- see CS 110

- std::async is one way to use multithreading

- Let’s see how to do multithreading ourselves!

18 November 2019

Example
Multithreading in Action

18 November 2019 56

Example
If we have time… the Classic Ticket Agent Example

18 November 2019 57

Next time

17 November 2019

Final Lecture

58

