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Problem: We can’t guarantee this function will 
not have a memory leak.
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string EvaluateSalaryAndReturnName(int idNumber) { 
  Employee* e = new Employee(idNumber);

  if ( e.Title() == "CEO" || e.Salary() > 100000 ) { 
    cout << e.First() << " " 
         << e.Last() << " is overpaid" << endl; 
  } 
  auto result = e.First() + " " + e.Last();

  delete result;
  return result; 
}



How do we guarantee classes 
release their resources?

Regardless of exceptions!
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RAII!
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Acquire resources in the constructor, 
release in the destructor.

Use a wrapper class that handles all the resource 
management for you!
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We previously saw how to make file reading 
RAII compliant using a wrapper class:
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We previously saw how to make file reading 
RAII compliant using a wrapper class:
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void printFile () {
  ifstream input();
  input.open(“hamlet.txt”);

  string line;
  while (getline(input, line)) {
    cout << line << endl;
  }

  input.close(); 
}

void printFile () {
  ifstream input(“hamlet.txt”);
  
  // read file

  // no close call needed!
} 
// stream destructor
// releases access to file
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We previously saw how to make locks 
RAII compliant using a wrapper class:
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We previously saw how to make locks 
RAII compliant using a wrapper class:
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void cleanDatabase (mutex& dbLock, 
map<int, int>& database) {

  
  lock_guard<mutex> lg(databaseLock); 

  // other threads will not modify database
  // modify the database
  // if exception thrown, that’s fine!

  // no release call needed
} // lock always unlocked when function exits.

void cleanDatabase (mutex& dbLock, 
map<int, int>& database) {

  
  databaseLock.lock();

  // other threads will not modify database
  // modify the database
  // if exception, mutex never unlocked!

  databaseLock.unlock();
}
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We previously saw how to make pointers
RAII compliant using a wrapper class:
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We previously saw how to make pointers
RAII compliant using a wrapper class:
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void rawPtrFn () {
  std::unique_ptr<Node> n(new Node);
  // do some stuff with n

} // Freed!

void rawPtrFn () {
  Node* n = new Node;
  // do some stuff with n…
  delete n;
}
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We previously saw how to make pointers
RAII compliant using a wrapper class:

13

void rawPtrFn () {
  std::unique_ptr<Node> n(new Node);
  // do some stuff with n

} // Freed!

void rawPtrFn () {
  Node* n = new Node;
  // do some stuff with n…
  delete n;
}

void rawPtrFn () {
  std::shared_ptr<Node> n(new Node);
  // do some stuff with n

} // Freed!
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Let’s take a closer look at how we declared a 
new smart pointer:
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void rawPtrFn () {
  std::unique_ptr<Node> n(new Node);
  // do some stuff with n

} // Freed!

void rawPtrFn () {
  Node* n = new Node;
  // do some stuff with n…
  delete n;
}

void rawPtrFn () {
  std::shared_ptr<Node> n(new Node);
  // do some stuff with n

} // Freed!
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Let’s take a closer look at how we declared a 
new smart pointer:
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void rawPtrFn () {
  std::unique_ptr<Node> n(new Node);
  // do some stuff with n

} // Freed!

void rawPtrFn () {
  Node* n = new Node;
  // do some stuff with n…
  delete n;
}

void rawPtrFn () {
  std::shared_ptr<Node> n(new Node);
  // do some stuff with n

} // Freed!



Example
Implement our own RAII-compliant pointer!
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Smart Pointer Creation
It’s trickier than you might think!
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C++ has two main built-in smart pointers:
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std::unique_ptr

std::shared_ptr
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C++ has two main built-in smart pointers:
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std::unique_ptr<Node> n(new Node);

std::shared_ptr<Node> n(new Node);
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C++ also has built-in smart pointer creators!
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std::unique_ptr<Node> n(new Node);

std::shared_ptr<Node> n(new Node);
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C++ also has built-in smart pointer creators!
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std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n = 

std::make_unique<Node>();

std::shared_ptr<Node> n(new Node);
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C++ also has built-in smart pointer creators!
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std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n = 

std::make_unique<Node>();

std::shared_ptr<Node> n(new Node);
std::shared_ptr<Node> n = 

std::make_shared<Node>();
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C++ also has built-in smart pointer creators!
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std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n = 

std::make_unique<Node>();
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C++ also has built-in smart pointer creators!
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std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n = 

std::make_unique<Node>();

Which is better to use?
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Which is better to use?
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Which is better to use?
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3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise
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Which is better to use?
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3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f( expr1, expr2 );
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Which is better to use?
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3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f( expr1, expr2 );
f( g(expr1), h(expr2) );
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Which is better to use?
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3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f( expr1, expr2 );
f( g(expr1), h(expr2) );

f( std::unique_ptr<T1>{ new T1 }, std::unique_ptr<T2>{ new T2 });
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Which is better to use?
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3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f( expr1, expr2 );
f( g(expr1), h(expr2) );

f( std::unique_ptr<T1>{ new T1 }, std::unique_ptr<T2>{ new T2 });

What might go wrong here?
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Which is better to use?
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3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

f( expr1, expr2 );
f( g(expr1), h(expr2) );

f( std::unique_ptr<T1>{ new T1 }, std::unique_ptr<T2>{ new T2 });
f( std::make_unique<T1>(), std::make_unique<T2>());
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Which is better to use?
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3 rules:
● Arguments to a function are evaluated before the function
● Each function is “atomic”
● Arguments may be interleaved otherwise

Note: The last rule has now been changed in 
C++17!

But we still prefer the wrapper functions -
make_shared has some performance benefits, etc.
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C++ also has built-in smart pointer creators!
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std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n = 

std::make_unique<Node>();

Which is better to use?
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C++ also has built-in smart pointer creators!
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std::unique_ptr<Node> n(new Node);
std::unique_ptr<Node> n = 

std::make_unique<Node>();

Which is better to use?

Always use std::make_unique<Node>()!
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So, coming full circle:
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So, coming full circle:
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In modern C++, we pretty much never 
use new and delete!



Announcements
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Announcements
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● Reminder to fill out the form for final lecture!
○ Also, come to final lecture to be part of our EOQ selfie!

● Assignment 2 grades will be coming out tomorrow

● Assignment 3 due this Friday, 3/6, 11:59 pm



Let’s Talk About...
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...Multithreading!

18 November 2019 40



What is a thread?
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What is a thread?
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Code is usually sequential.
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What is a thread?
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Code is usually sequential.

Threads are ways to parallelise execution.
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What is a thread?
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What is a thread?
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What is a thread?
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What is a thread?
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What is a thread?
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What is a thread?
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Set a = 2, b = 1



What is a thread?
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Set a = 2, b = 1

a = 5b += a



What is a thread?
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Set a = 2, b = 1

a = 5b += a

b = ???



This is known as a data race!
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Set a = 2, b = 1

a = 5b += a

b = ???
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We’ve already seen locks with RAII!
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void cleanDatabase (mutex& dbLock, 
map<int, int>& database) {

  
  lock_guard<mutex> lg(databaseLock); 

  // other threads will not modify database
  // modify the database
  // if exception thrown, that’s fine!

  // no release call needed
} // lock always unlocked when function exits.

void cleanDatabase (mutex& dbLock, 
map<int, int>& database) {

  
  databaseLock.lock();

  // other threads will not modify database
  // modify the database
  // if exception, mutex never unlocked!

  databaseLock.unlock();
}



Return of the STL!
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http://www.cplusplus.com/reference/multithreading/

http://www.cplusplus.com/reference/multithreading/


Things to Take Away:
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- Use atomic types if doing multithreading!
- std::lock_guard vs. std::unique_lock
- 3 types of “locks”/mutexes: normal, timed, recursive
- Condition variables allow cross-thread communication

- see CS 110

- std::async is one way to use multithreading

- Let’s see how to do multithreading ourselves!
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Example
Multithreading in Action
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Example
If we have time… the Classic Ticket Agent Example
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Next time
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Final Lecture
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