
Functions and Algorithms

Game Plan

• concept lifting part 2
• lambda functions
• algorithms
• iterator adaptors

29 January 2020 2

concept lifting part 2

29 January 2020 3

29 January 2020

How many times does the
[type] [val] appear in [a range of elements]?

4

template <typename InputIt, typename DataType>
int countOccurences(InputIt begin, InputIt end,

DataType val) {
int count = 0;
for (auto iter = begin; iter != end; ++iter) {

if (*iter == val) ++count;
}
return count;

}

29 January 2020

How many times does the
[type] [val] appear in [a range of elements]?

5

Let’s look at this part.

template <typename InputIt, typename DataType>
int countOccurences(InputIt begin, InputIt end,

DataType val) {
int count = 0;
for (auto iter = begin; iter != end; ++iter) {

if (*iter == val) ++count;
}
return count;

}

29 January 2020

How many times does the element satisfy
“equal [val]” in [a range of elements]?

6

This is another way to phrase
what we are counting.

template <typename InputIt, typename DataType>
int countOccurences(InputIt begin, InputIt end,

DataType val) {
int count = 0;
for (auto iter = begin; iter != end; ++iter) {

if (*iter == val) ++count;
}
return count;

}

29 January 2020

A predicate is a function which takes in some
number of arguments and returns a boolean.

7

// Unary Predicate (one argument)
bool isEqualTo3(int val) {

return val == 3;
}

// Binary Predicate (two arguments)
bool isDivisibleBy(int dividend, int divisor) {

return dividend % divisor == 0;
}

29 January 2020

How many times does the element satisfy
[predicate] in [a range of elements]?

8

“equals [val]” is essentially a
predicate function. Let’s

further generalize the function.

template <typename InputIt, typename DataType,
typename UniPred>

int countOccurences(InputIt begin, InputIt end,
UniPred predicate) {

int count = 0;
for (auto iter = begin; iter != end; ++iter) {

if (predicate(*iter)) ++count;
}
return count;

}

29 January 2020

We can then call this function with a predicate.

9

bool isLessThan5(int val) {
return val < 5;

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};

countOccurences(vec.begin(), vec.end(), isLessThan5);
// prints 2
return 0;

}

29 January 2020

Problem 1: what if we wanted to use some upper
limit other than 5?

10

bool isLessThan5(int val) {
return val < 5;

}

bool isLessThan6(int val) {
return val < 6;

}

bool isLessThan7(int val) {
return val < 7;

}

29 January 2020

Problem 2: scope issue with having a variable limit
in the calling function.

11

bool isLessThanLimit(int val) {
return val < limit; // out of scope!

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 8;
countOccurences(vec.begin(), vec.end(), isLessThanLimit);
return 0;

}

29 January 2020

Problem 3: we can’t add an extra parameter to the
predicate function.

12

bool isLessThanLimit(int val, int limit) {
return val < limit; // not out of scope, but...

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 8;
countOccurences(vec.begin(), vec.end(), isLessThanLimit);
return 0; // template error!

}

29 January 2020

Predicate must be a unary predicate because of
how we use it in countOccurences.

13

template <typename InputIt, typename DataType,
typename UniPred>

int countOccurences(InputIt begin, InputIt end,
UniPred predicate) {

int count = 0;
for (auto iter = begin; iter != end; ++iter) {

if (predicate(*iter)) ++count;
}
return count;

}

29 January 2020

The core fundamental issue is about scope!

14

bool isLessThanLimit(int val) {
return val < limit; // out of scope!

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 8;
countOccurences(vec.begin(), vec.end(), isLessThanLimit);
return 0;

}

lambda functions

29 January 2020 15

29 January 2020

Old approach: function pointers

16

bool isLessThanLimit(int val) {
return val < limit; // compiler error!

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 5;

countOccurences(vec.begin(), vec.end(), isLessThanLimit);
return 0;

}

29 January 2020

New approach: lambda functions

17

bool isLessThanLimit(int val) {
return val < 5;

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 5;
auto isLessThanLimit = [limit](auto val) -> bool {

return val < limit;
}
countOccurences(vec.begin(), vec.end(), isLessThanLimit);
return 0;

}

29 January 2020

New approach: lambda functions

18

bool isLessThanLimit(int val) {
return val < 5;

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 5;
auto isLessThanLimit = [limit](auto val) -> bool {

return val < limit;
}
countOccurences(vec.begin(), vec.end(), isLessThanLimit);
return 0;

}

auto isLessThanLimit = [limit](auto val) -> bool {
return val < limit;

}

29 January 2020

New approach: lambda functions

19

We don’t know the
type, ask compiler.

capture clause,
gives access to outside

variables

parameter list,
can use auto!

return type,
optional

Scope of lambda limited to capture
clause and parameter list.

29 January 2020

You can also capture by reference.

20

set<string> teas{“black”, “green”, “oolong”};
string banned = “boba”; // pls … this is not a tea
auto likedByAvery = [&teas, banned](auto type) {

return teas.count(type) && type != banned;
};

29 January 2020

You can also capture everything
by value or reference.

21

// capture all by value, except teas is by reference
auto func1 = [=, &teas](parameters) -> return-value {

// body
};

// capture all by reference, except banned is by value
auto func2 = [&, banned](parameters) -> return-value {

// body
};

29 January 2020

FYI, std::function<R(Args…)>
is a generic wrapper for all things callable.

generally prefer auto or template deduction for functions, since std::function has a performance problem

22

int main() {
std::function<void()> func1 = []() { return 137; };
std::function<bool(int)> func2 = isLessThanLimit;

std::function< int(iterator, iterator,
std::function<bool(int)>) >

= countOccurences< v.begin(), v.end(), func2 >;
}

29 January 2020

Lambdas are a type of function object
(“functor”)

23

{
auto mult = [](int param, int factor) {

return param * factor;
};

// call mult’s () operator, like a function
auto val = mult(3, 2); // val is 6

// bind takes a functor and returns a functor
auto multBound = std::bind(mult, _1, 2);

} // destructor for mult called

29 January 2020

Is there a way we can adapt this function we have
to be usable in our generic function?

24

bool isLessThanLimit(int val, int limit) {
return val < limit; // not out of scope, but...

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 8;

countOccurences(vec.begin(), vec.end(), isLessThanLimit);
}

29 January 2020

Solution 1: Write a lambda which wraps the call to
isLessThanLimit.

25

bool isLessThanLimit(int val, int limit) {
return val < limit; // not out of scope, but...

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 8;
auto isLessThan = [limit] (int val) {

return isLessThanLimit(val, limit);
};
countOccurences(vec.begin(), vec.end(), isLessThan);

}

29 January 2020

Solution 2: std::bind, basically does the same
thing.

26

bool isLessThanLimit(int val, int limit) {
return val < limit; // not out of scope, but...

}

int main() {
vector<int> vec{1, 3, 5, 7, 9};
int limit = 8;
auto isLessThan = std::bind(isLessThanLimit, _1, limit);

countOccurences(vec.begin(), vec.end(), isLessThan);
}

algorithms

29 January 2020 27

29 January 2020

The STL algorithms library has a highly optimized
version of what we wrote!

28

(this one’s replaced in C++20)

(this one runs in parallel)

(this one’s replaced in C++20)

(this one runs in parallel)

29 January 2020 29

Let’s try some basic operations on
information from Carta!

struct Course {
string code;
double rating;

};

29 January 2020 30

Algorithms we will explore!

std::sort
std::nth_element
std::stable_partition
std::copy_if
std::remove_if

29 January 2020 31

Calculate the median course rating.
O(Nlog N)

29 January 2020 32

auto compRating = [](const auto& s1,
const auto& s2) {

return s1.rating < s2.rating;
};

size_t size = classes.size();

// O(N log N) sort
std::sort(classes.begin(), classes.end(), compAvg);

Course median = classes[size/2];

Calculate the median course rating.
O(N)

29 January 2020 33

auto compRating = [](const auto& s1,
const auto& s2) {

return s1.rating < s2.rating;
};

size_t size = classes.size();

// O(N), sorts so nth_element is in correct position
// all elements smaller to left, larger to right
Course median = *std::nth_element(classes.begin(),

classes.end(), size/2, compAvg);

What does stable partition do?

29 January 2020 34

CS CS CSNot CS Not CS Not CS Not CS

After a call to stable_partition:

29 January 2020 35

CS CS CS Not CS Not CS Not CS Not CS

return value:
partition point

Stable: order preserved within
“CS” and “Not CS” group.

Using stable_partition.

29 January 2020 36

string dep = ”CS”;
auto isDep = [dep](const auto& course) {

return course.name.size() >= dep.size &&
course.substr(0, dep.size()) == dep;

};

auto iter = std::stable_partition(courses.begin(),
courses.end(), isDep);

courses.erase(iter, courses.end());

Why use algorithms?

• Abstraction: perform algorithms without looking at
elements.

• Generic: operations are based on ranges, not
containers.

• Correct: heavily tested, most definitely correct.
• Heavily optimized: performs optimizations using

features we haven’t/won’t even learn about.

29 January 2020 37

This code unfortunately doesn’t work!

29 January 2020 38

string dep = ”CS”;
auto isDep = [dep](const auto& course) {

return course.name.size() >= dep.size &&
course.substr(0, dep.size()) == dep;

};

std::copy_if(csCourses.begin(), csCourses.end(),
csCourses, isDep);

Copy all the CS courses into a
new vector.

29 January 2020 39

CS CS CSNot CS CS Not CSCS

Sometimes vector’s have more
space than required.

begin end

begin

uninitialized memory

29 January 2020 40

Let’s run copy_if!

begin end

begin

uninitialized memory

Copy all the CS courses into a
new vector.

CS CS CSNot CS CS Not CSCS

29 January 2020 41

Let’s run copy_if!

begin end

begin

CS uninitialized memory

Copy all the CS courses into a
new vector.

CS CS CSNot CS CS Not CSCS

29 January 2020 42

Let’s run copy_if!

begin end

begin

CS uninitialized memory

Copy all the CS courses into a
new vector.

CS CS CSNot CS CS Not CSCS

29 January 2020 43

Let’s run copy_if!

begin end

begin

CS CS uninitialized memory

Copy all the CS courses into a
new vector.

CS CS CSNot CS CS Not CSCS

29 January 2020 44

uninitialized memory

Whoops, we wrote into
uninitialized memory!

begin end

begin

CS CS CS

Copy all the CS courses into a
new vector.

CS CS CSNot CS CS Not CSCS

29 January 2020 45

uninitialized memory

Whoops, we wrote into
uninitialized memory!

begin end

begin

CS CS CS CS

Copy all the CS courses into a
new vector.

CS CS CSNot CS CS Not CSCS

We need a special iterator which
extends the container.

29 January 2020 46

string dep = ”CS”;
auto isDep = [dep](const auto& course) {

return course.name.size() >= dep.size &&
course.substr(0, dep.size()) == dep;

};

std::copy_if(csCourses.begin(), csCourses.end(),
back_inserter(csCourses), isDep);

We need a special iterator which
extends the container.

29 January 2020 47

Let’s run the fixed version

begin end

begin

CS CS uninitialized memory

CS CS CSNot CS CS Not CSCS

We need a special iterator which
extends the container.

29 January 2020 48

Let’s run the fixed version

begin end

begin

CS CS uninitialized memoryCS

CS CS CSNot CS CS Not CSCS

We need a special iterator which
extends the container.

29 January 2020 49

Let’s run the fixed version

begin end

begin

CS CS uninitialized memoryCS CS

CS CS CSNot CS CS Not CSCS

Stream iterators read from istreams or
write to ostreams!

29 January 2020 50

string dep = ”CS”;
auto isDep = [dep](const auto& course) {

return course.name.size() >= dep.size &&
course.substr(0, dep.size()) == dep;

};

std::copy_if(csCourses.begin(), csCourses.end(),
std::ostream_iterator<Course>(cout, ”\n"), isDep);

Let’s run through this code!

29 January 2020 51

1 1 12 3 4 5

iterwrite

begin end

Let’s run through this code!

29 January 2020 52

1 12 3 4 5

iterwrite

begin end

Let’s run through this code!

29 January 2020 53

1 12 3 4 5

iterwrite

begin end

Let’s run through this code!

29 January 2020 54

1 12 3 4 5

writeiter

begin end

Let’s run through this code!

29 January 2020 55

1 12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 56

1 12 3 4 5

writeiter

begin end

Let’s run through this code!

29 January 2020 57

1 12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 58

12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 59

12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 60

12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 61

12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 62

12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 63

12 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 64

2 3 4 5

write iter

begin end

Let’s run through this code!

29 January 2020 65

2 3 4 5

return value

begin end

std::remove does not change the
size of the container!

• It can’t!
• The algorithm is not a member of std::vector (or any

other collection) so it can’t change its size member.

29 January 2020 66

Let’s run through this code!

29 January 2020 67

2 3 4 5

return value

begin
endwant to erase

erase-remove idiom

v.erase(
std::remove_if(v.begin(), v.end(), pred),
v.end()

);

29 January 2020 68

returns iterator to
beginning of trash.

erases trash
(everything between

iterator and end)

29 January 2020 69

template <typename ForwardIt, typename UniPred>
ForwardIt remove_if(ForwardIt first, ForwardIt last,

UniPred pred) {

}

Homework Problem
Implement the logic of remove from before!

Next time

29 January 2020

Applying the Algorithms + STL Review

70

