
Lecture 11: Const correctness
CS106L, Winter ‘21

1

CS 106B covers the barebones of C++ classes
we’ll be covering the rest

template classes • const correctness • operator overloading
special member functions • move semantics • RAII

CS 106B covers the barebones of C++ classes
we’ll be covering the rest

template classes • const correctness • operator overloading
special member functions • move semantics • RAII

● Recap: template classes
● Recap: const references
● Const members
● const_iterator

4

Agenda

Quick recap: template class
code from last time

5

Recap: const references

6

Const references

int main() {
int i = 3;
const int& ref = i;
i++;
cout << ref << endl; // okay, prints 4
ref = 1; // error, const

}

● A reference is an alias to a variable
● A const reference allows you to read the variable through that alias, but

not modify it

Const correctness motivation

8

Today’s goal: make sense of this problem

9

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {
 cout << vec.size() << endl;
}

Before After

10

// vector.h
template <typename T>
class vector {
 size_t size();
}

#include vector.cpp

// vector.cpp
template <typename T>
size_t vector<T>::size(){

// some code
}

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {
 cout << vec.size() << endl;
}

Today’s goal: make sense of this problem

What’s going to happen if we
compile this code? (answer in

chat)

Before After

11

// vector.h
template <typename T>
class vector {
 size_t size();
}

#include vector.cpp

// vector.cpp
template <typename T>
size_t vector<T>::size(){

// some code
}

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {
 cout << vec.size() << endl;
}

Today’s goal: make sense of this problem

What’s going to happen if we
compile this code? (answer in

chat)

🤔 Questions? 🤔

Understanding const
correctness

13

Const Members

14

• A const member function is a function that cannot modify any private
member variables.

• A const member function can only call other const member functions

If a function should be able to be called on
a const object, it should be designated as

const.

Why should we enforce const correctness?

15

• Const correctness isn’t just a style thing - it’s necessary for your code
to be correct! (example: see compiler error a few slides before this)

Const-qualified object

const std::vector<int> my_vec{1, 2, 3}; // Object declared as const
std::vector<int> other_vec;
const std::vector<int>& ref = other_vec; // Const reference

std::cout << my_vec.size() << endl; // allowed
my_vec.push_back(4); // not allowed!

● Since a const-qualified object cannot modify its members, it
can only call its own const member functions

● Exceptions: constructor and destructor

Summary of Terminology

• const reference = a reference that cannot be used to modify the object
that is being referenced.

• const method = a method of a class that can't change any class
variables and can only call other const methods.

• const object = an object declared as const that can only call its const
methods.

17

Before After

18

// vector.h
template <typename T>
class vector {
 size_t size();
}

#include vector.cpp

// vector.cpp
template <typename T>
size_t vector<T>::size(){

// some code
}

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {
 cout << vec.size() << endl;
}

So, how do we fix this code?

Before After

19

// vector.h
template <typename T>
class vector {
 size_t size() const;
}

#include vector.cpp

// vector.cpp
template <typename T>
size_t vector<T>::size() const {

// some code
}

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {
 cout << vec.size() << endl;
}

Just add a const keyword!

Before After

20

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index);
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index);
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

Const objects see a subset of member functions
What non-const vectors see What const vectors see

Before After

21

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index);
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index);
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

Do you see any potential problems here? (chat)
What non-const vectors see What const vectors see

Before After

22

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index);
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index);
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

Ans: in the const vector we should still be able to call .at()!

What non-const vectors see What const vectors see

Before After

23

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

Attempt 1: Make at() a const function
What non-const vectors see What const vectors see

Before After

24

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

Problem: at() returns a non-const reference, allowing
you to modify values inside the vector!

What non-const vectors see What const vectors see

Before After

25

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

What non-const vectors see What const vectors see

Attempt 2: Have at() return a const reference

Before After

26

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

What non-const vectors see What const vectors see

Problem: non-const vector needs to return a
non-const reference!

Before After

27

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
T& at(size_t index);

 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
T& at(size_t index);

 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

What non-const vectors see What const vectors see

Attempt 3: include both const and non-const

Before After

28

// non-const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
T& at(size_t index);

 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

// const objects
template <typename T>
class vector {
 vector();
 ~vector();

 const T& at(size_t index) const;
T& at(size_t index);

 void push_back(const T& elem);

 size_t size() const;
 bool empty() const;
 // among other functions
}

What non-const vectors see What const vectors see

Attempt 3: include both const and non-const

Note: compiler will prefer the
non-const version if it’s not clear
which one is being invoked

Before After

29

template <typename T>
T&
vector<T>::at(size_t index) {
 return _elems[index];
}

template <typename T>
const T&
vector<T>::at(size_t index) const {
 return _elems[index];
}

Implementation for both look the same!

There’s not too much code, so code duplication is fine
in this situation

🤔 Questions? 🤔

Live Code Demo:
Let’s see a const-correct version of our

vector class!

Announcements

32

Announcements

● Assignment 1 is due on Sunday at 11:59 PM
○ You can take up to two late days (until Tuesday at 11:59 PM)

● There might be some variance in the Emu->Stanford ladder. Don’t worry
too much about this!

● Panopto is enabled!

33

const_iterators

const_iterator != const iterator

std::vector<int> non_const_vec{1, 2, 3};
const std::vector<int> const_vec{1, 2, 3};

auto iter = non_const_vec.begin(); // non-const iter
const auto iter2 = non_const_vec.begin(); // const iter
auto iter3 = const_vec.begin(); // const_iterator

• iterator points to non-const objects
• const_iterator points to const objects

• The const_iterator object itself is not const!
• You can perform ++ on a const_iterator.
• You cannot write to a const_iterator (*iter = 3)

Type of iterator depends on const-ness of container

• Non-const containers provide iterators
• const containers provide const_iterators (since their internal elements

are const)

• Makes intuitive sense: const_iterators don't let you write to the const
containers.

36

A const iterator is a const object (can’t be changed)

std::vector<int> non_const_vec{1, 2, 3};

const auto iter2 = non_const_vec.begin(); // const iter

• A const iterator cannot be changed after it is
constructed.

• No incrementing or reassignment is allowed.

How const_iterators are used

38

https://en.cppreference.com/w/cpp/contai
ner/vector/begin

🤔 Questions? 🤔

Operator Overloading

Next time

40

