Lecture 11: Const correctness
CS106L, Winter 21

CS 106B covers the barebones of C++ classes

we’ll be covering the rest

template classes ¢ const correctness ¢ operator overloading
special member functions « move semantics ¢ RAIl

CS 106B covers the barebones of C++ classes

we’ll be covering the rest

template classes ¢ const correctness ¢ operator overloading
special member functions « move semantics ¢ RAIl

e Recap:template classes
e Recap: const references
e (Const members

e const iterator

Quick recap: template class
code from last time

Recap: const references

Const references

e A reference is an alias to a variable
e A const reference allows you to read the variable through that alias, but
not modify it

int main() {

int 1 = 3;

const int& ref = 1;

1++;

cout << ref << endl; // okay, prints 4
ref = 1; // error, const

Const correctness motivation

Today’s goal: make sense of this problem

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {
cout << vec.size() << endl;

}

Today’s goal: make sense of this problem

// vector.h
template <typename T>
class vector {

size_t size();

}

#include vector.cpp

// vector.cpp

template <typename T>

size_t vector<T>::size(){
// some code

}

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {
cout << vec.size() << endl;

3

What's going to happen if we
compile this code? (answer in

chat)

10

Today’s goal: make sense of this problem

// vector.h // main.cpp
template <typename T> #include "vector.h"
class vector {
size_t size(); void foo(const vector<int>& vec) {
} cout << vec.size() << endl;
3

#include vector.cpp

// vector.cpp

template <typename T> What’S ¢ Oin ¢ tO ha open if we

main.cpp:10:13: 'this' argument to member function 'size' has type 'const vector<int>', but function is not marked const
cout << vec.size() << endl;

~orv

./vector.h:30:16: 'size' declared here
size t size();

1 warning and 1 error generated.
make: xxkx [main] Error 1

=) Questions? (=

Understanding const
correctness

Const Members

e A const member function is a function that cannot modify any private
member variables.
* A const member function can only call other const member functions

14

If a function should be able to be called on
a const object, it should be designated as
const.

Why should we enforce const correctness?

* Const correctness isn't just a style thing - it’s necessary for your code
to be correct! (example: see compiler error a few slides before this)

15

Const-qualified object

e Since a const-qualified object cannot modify its members, it
can only call its own const member functions
e Exceptions: constructor and destructor

const std::vector<int> my_vec{1, 2, 3}; // Object declared as const
std: :vector<int> other_vec;
const std::vector<int>& ref = other_vec; // Const reference

std::cout << my_vec.size() << endl; // allowed
my_vec.push_back(4); // not allowed!

Summary of Terminology

e const reference = a reference that cannot be used to modify the object
that is being referenced.

e const method = a method of a class that can’'t change any class
variables and can only call other const methods.

e const object = an object declared as const that can only call its const
methods.

17

So, how do we fix this code?

// vector.h
template <typename T>
class vector {

size_t size();

#include vector.cpp

// vector.cpp

template <typename T>

size_t vector<T>::size(){
// some code

// main.cpp
#include "vector.h"

void foo(const vector<int>& vec) {

cout << vec.size() << endl;

Just add a const keyword!

// vector.h // main.cpp
template <typename T> #include "vector.h"
class vector {

size_t size(void foo(const vector<int>& vec) {

} cout << vec.size() << endl;
#include vector.cpp

// vector.cpp
template <typename T>

size_t vector<T>:: size(

// some code
}

Const objects see a subset of member functions

What non-const vectors see

// non-const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index);
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

What const vectors see

// const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index);
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

20

Do you see any potential problems here? (chat)

What const vectors see

What non-const vectors see

// non-const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index);
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

// const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index);
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

21

Ans: in the const vector we should still be able to call .at()!

What non-const vectors see

What const vectors see

// non-const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index);
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

// const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index);
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

22

Attempt 1: Make at() a const function

What non-const vectors see

// non-const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index) const;
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

What const vectors see

// const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index) const;
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

23

Problem: at() returns a non-const reference, allowing
you to modify values inside the vector!

What non-const vectors see What const vectors see

// non-const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index) const;
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

// const objects

template <typename T>

class vector {
vector();
~vector();

T& at(size_t index) const;

size_t size() const;

bool empty() const;
// among other functions

24

Attempt 2: Have at() return a const reference

What non-const vectors see

// non-const objects

template <typename T>

class vector {
vector();
~vector();

const T& at(size_t index) const;
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

What const vectors see

// const objects

template <typename T>

class vector {
vector();
~vector();

const T& at(size_t index) const;
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

25

Problem: non-const vector needs to return a

non-const reference!

What non-const vectors see

// non-const objects

template <typename T>

class vector {
vector();
~vector();

const T& at(size_t index) const;
void push_back(const T& elem);

size_t size() const;
bool empty() const;
// among other functions

What const vectors see

// const objects

template <typename T>

class vector {
vector();
~vector();

const T& at(size_t index) const;

size_t size() const;

bool empty() const;
// among other functions

26

Attempt 3: include both const and non-const

What non-const vectors see What const vectors see
// non-const objects // const objects
template <typename T> template <typename T>
class vector { class vector {
vector(); vector();
~vector(); ~vector();
const T& at(size_t index) const; const T& at(size_t index) const;
T& at(size_t index); T& at(size_t index);
void push_back(const T& elem); void push_back(const T& elem);
size_t size() const; size_t size() const;
bool empty() const; bool empty() const;
// among other functions // among other functions
} 3

Attempt 3: include both const and non-const

What non-const vectors see What const vectors see
// non-const objects // const objects
template <typename T> template <typename T>
class vector { class vector {
vector(); vector();
~vector(); ~vector();

Note: compiler will prefer the
const T& at(size_t i han_const version if it’s not clear

T& at(size_t index); | \which one is being invoked
void push_back(const ,

(size_t index) const;

size_t size() const; size_t size() const;

bool empty() const; bool empty() const;

// among other functions // among other functions
} }

Implementation for both look the same!

template <typename T>

T&

vector<T>::at(size_t index) {
return _elems[index];

template <typename T>

const T&

vector<T>::at(size_t index) const {
return _elems[index];

There’s not too much code, so code duplication is fine

In this situation

29

=) Questions? (=

Live Code Demo:
Let’s see a const-correct version of our
vector class!

Announcements

Announcements

e Assignment 1 is due on Sunday at 11:59 PM
o You can take up to two late days (until Tuesday at 11:59 PM)
e There might be some variance in the Emu->Stanford ladder. Don’t worry

too much about this!
e Panopto is enabled!

33

const iterators

const 1iterator

e [terator points to non-const objects
e const_iterator points to const objects

e The const iterator object itself is not const!
e You can perform ++ on a const_iterator.
e You cannot write to a const_iterator (“iter = 3)

std: :vector<int> non_const_vec{1, 2, 3};
const std::vector<int> const_vec{1, 2, 3};

auto iter = non_const_vec.begin(); // non-const iter
const auto iter2 = non_const_vec.begin(); // const iter
auto iter3 = const_vec.begin(); // const_iterator

Type of iterator depends on const-ness of container

 Non-const containers provide iterators
e const containers provide const_iterators (since their internal elements

are const)

 Makes intuitive sense: const_iterators don't let you write to the const
containers.

36

A const iterator is a const object (can’t be changed)

e A const iterator cannot be changed after it is
constructed.
 No incrementing or reassignment is allowed.

std: :vector<int> non_const_vec{1, 2, 3};

const auto iter2 = non_const_vec.begin(); // const iter

How const iterators are used

https://en.cppreference.com/w/cpp/contal
ner/vector/begin

=) Questions? (=

Next time

Operator Overloading

