
Move Semantics in C++
A fancy way to say “how can we avoid making unnecessary copies 

of resources?”
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Definition: l-values vs r-values
- l-values can appear on the left or 

right of an =

- x is an l-value

l-values have names 

l-values are not temporary

- r-values can ONLY appear on the 

right of an =

- 3 is an r-value

r-values don’t have names 

r-values are temporary 

int x = 3;
int y = x;

int x = 3;
int y = x;
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l-values live until the end of the scope

r-values live until the end of the line
(unless you artificially extend their lifetimes)

...more on this later



Find the r-values! 
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int *ptr = 0x02248837;
vector<int> v1{1, 2, 3};
auto v4 = v1 + v2;
size_t size = v.size(); 
v1[1] = 4*i;
ptr = &x; 
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;
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Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
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ptr = &x; //&x is an r-value
v1[2] = *ptr; //*ptr is an l-value
MyClass obj; //obj is an l-value
x = obj.public_member_variable; //obj.public_member_variable is l-value



Questions?



Only l-values can be referenced using &
int main() {

vector<int> vec;
change(vec);

}

void change(vector<int>& v){...} 
//v is a reference to vec

int main() {
change(7);
//this will compile error

}
//we cannot take a reference to
//a literal!
void change(int& v){...} 



Recall: Vector Copy Assignment
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) { 

if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 
delete[] _elems; 
_elems = new T[other._capacity]; 
std::copy(other._elems, other._elems + other._size, _elems); 
return *this; 

}
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Recall: Vector Copy Constructor
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) { 

rvalues can be bound to const & (we promise not to change them)
int main() {

vector<int> vec;
vec = make_me_a_vec(123); //make_me_a_vec(123) is an r-value

}

passing by & avoids making unnecessary copies… but does it?



How many arrays will be allocated, copied and destroyed here?
int main() {

vector<int> vec;
vec = make_me_a_vec(123); 

}

vector<int> make_me_a_vec(int num) {
vector<int> res;
while (num != 0) {

res.push_back(num%10);
num /= 10;

}
return res;

}



code



How many arrays will be allocated, copied and destroyed here?
int main() {

vector<int> vec;
vec = make_me_a_vec(123); //make_me_a_vec(123) is an r-value

}

- vec is created using the default constructor

- make_me_a_vec creates a vector using the default constructor and returns it

- vec is reassigned to a copy of that return value using copy assignment

- copy assignment creates a new array and copies the contents of the old one

- The original return value’s lifetime ends and it calls its destructor

- vec’s lifetime ends and it calls its destructor
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copy assignment creates a new array and copies the contents of 
the old one...
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) { 

if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 
delete[] _elems; 
_elems = new T[other._capacity]; 
std::copy(other._elems, other._elems + other._size, _elems); 
return *this; 

}



copy assignment creates a new array and copies the contents of 
the old one… what if it didn’t?
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) { 

if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 
_elems = other._elems;
return *this; 

}

Let’s call this move assignment



Is this allowed?



This works!
int main() {

vector<int> vec;
vec = make_me_a_vec(123); 

}



This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); 

}

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1;
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}



This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); 

}

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1;
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

} //BAD!
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How do we know when to use move assignment and 
when to use copy assignment?

When the item on the right of the = is an 
r-value we should use move assignment

Why? r-values are always about to die, so we 
can steal their resources



Using move assignment

Using copy assignment

int main() {
vector<int> vec;
vec = make_me_a_vec(123); 

}

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1;
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

} //and vec2 never saw a thing



Questions?
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How to make two different assignment operators?
Overload vector::operator= !

How? Introducing… the r-value reference
 &&

(This is different from the l-value reference & you have see before)

(it has one more ampersand)



Overloading with &&
int main() {

int x = 1;
change(x); //this will call version 2
change(7); //this will call version 1

}

void change(int&& num){...} //version 1 takes r-values
void change(int& num){...}  //version 2 takes l-values
//num is a reference to vec



vector<T>& operator=(const vector<T>& other) 
{ 

if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 

//must copy entire array
delete[] _elems; 
_elems = new T[other._capacity]; 
std::copy(other._elems, 
other._elems + other._size, 
_elems); 
return *this; 

}

Copy assignment Move assignment
vector<T>& operator=(vector<T>&& other)



vector<T>& operator=(const vector<T>& other) 
{ 

if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 

//must copy entire array
delete[] _elems; 
_elems = new T[other._capacity]; 
std::copy(other._elems, 
other._elems + other._size, 
_elems); 
return *this; 

}

Copy assignment Move assignment
vector<T>& operator=(vector<T>&& other)
{ 

if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 

//we can steal the array
delete[] _elems; 
_elems = other._elems
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}



This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1; //this will use copy assignment
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

} 

The compiler will pick which vector::operator= to use based 
on whether the RHS is an l-value or an r-value



Can we make it even better?
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Can we make it even better?
Move assignment
vector<T>& operator=(vector<T>&& other) 
{ 

if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 

//we can steal the array
delete[] _elems; 
_elems = other._elems
return *this; 

}

Technically, these 
are also making 
copies (using 
int/ptr copy 
assignment)



Introducing… std::move
- std::move(x) doesn’t do anything except cast x as an r-value

- It is a way to force C++ to choose the && version of a function

int main() {
int x = 1;
change(x); //this will call version 2
change(std::move(x)); //this will call version 1

}

void change(int&& num){...} //version 1 takes r-values
void change(int& num){...}  //version 2 takes l-values
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_capacity = other._capacity; 

//we can steal the array
delete[] _elems; 
_elems = other._elems
return *this; 

}

We can force 
move assignment 
rather than copy 
assignment of 
these ints by 
using std::move!



Can we make it even better?
Move assignment
vector<T>& operator=(vector<T>&& other) 
{ 

if (&other == this) return *this; 
_size = std::move(other._size); 
_capacity = std::move(other._capacity); 

//we can steal the array
delete[] _elems; 
_elems = std::move(other._elems);
return *this; 

}

We can force 
move assignment 
rather than copy 
assignment of 
these ints by 
using std::move!
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But what about this?
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This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1; //this will use copy construction
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

} 

The compiler will pick which vector::operator= to use based 
on whether the RHS is an l-value or an r-value



This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”} //this should use move 
vector<string> vec2 = vec1; //this will use copy construction
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

} 

The compiler will pick which vector::operator= to use based 
on whether the RHS is an l-value or an r-value



Let’s do it with our copy constructor!

vector<T>(const vector<T>& other) { 
if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 

//must copy entire array
delete[] _elems; 
_elems = new T[other._capacity]; 
std::copy(other._elems, 
other._elems + other._size, 
_elems); 
return *this; 

}

copy constructor move constructor



Let’s do it with our copy constructor!

vector<T>(const vector<T>& other) { 
if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 

//must copy entire array
delete[] _elems; 
_elems = new T[other._capacity]; 
std::copy(other._elems, 
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Let’s do it with our copy constructor!

vector<T>(const vector<T>& other) { 
if (&other == this) return *this; 
_size = other._size; 
_capacity = other._capacity; 

//must copy entire array
delete[] _elems; 
_elems = new T[other._capacity]; 
std::copy(other._elems, 
other._elems + other._size, 
_elems); 
return *this; 

}

copy constructor move constructor
vector<T>(vector<T>&& other) { 

if (&other == this) return *this;
 
_size = std::move(other._size); 
_capacity =

std::move(other._capacity); 

//we can steal the array
delete[] _elems; 
_elems = std::move(other._elems);
return *this;

}



Where else should we use std::move? 



Where else should we use std::move? 

Rule of Thumb: Wherever we take in a const & 
parameter in a class member function and assign it 

to something else in our function



vector::push_back

void push_back(const T& element) {
elems[_size++] = element; 
//this is copy assignment 

}

Copy push_back Move push_back
void push_back(T&& element) {

elems[_size++] =
std::move(element); 

//this forces T’s move 
//assignment 

}



Be careful with std::move 
int main() {

vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = std::move(vec1);
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}



Be careful with std::move 

- After a variable is moved via std::move, it should never be used until it is 

reassigned to a new variable!

- The C++ compiler might warn you about this mistake, but the code above 

compiles!

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = std::move(vec1);
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}



Where else should we use std::move? 

Rule of Thumb: Wherever we take in a const & 
parameter in a class member function and assign it 

to something else in our function

Don’t use std::move outside of class 
definitions, never use it in application code!



TLDR: Move Semantics
- If your class has copy constructor and copy assignment defined, you 

should also define a move constructor and move assignment

- Define these by overloading your copy constructor and assignment to be 

defined for Type&& other as well as Type& other

- Use std::move to force the use of other types’ move assignments and 

constructors

- All std::move(x) does is cast x as an rvalue

- Be wary of std::move(x) in main function code!



Bonus: std::move and RAII
- Recall: RAII means all resources required by an object are acquired in its 

constructor and destroyed in its destructor

- To be consistent with RAII, you should have no half-ready resources, such as a 

vector whose underlying array has been deallocated
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vector whose underlying array has been deallocated

Is std::move consistent with RAII?



Bonus: std::move and RAII
- Recall: RAII means all resources required by an object are acquired in its 

constructor and destroyed in its destructor

- To be consistent with RAII, you should have no half-ready resources, such as a 

vector whose underlying array has been deallocated

Is std::move consistent with RAII?

- I say NO!

- This is a sticky language design flaw, C++ has a lot of those! On your own: what 

other solutions to the overloading problem can you think of? 


