
Move Semantics in C++
A fancy way to say “how can we avoid making unnecessary copies

of resources?”

Definition: l-values vs r-values
- l-values can appear on the left or

right of an =

Definition: l-values vs r-values
- l-values can appear on the left or

right of an =

- x is an l-value

int x = 3;
int y = x;

Definition: l-values vs r-values
- l-values can appear on the left or

right of an =

- x is an l-value

l-values have names

l-values are not temporary

int x = 3;
int y = x;

Definition: l-values vs r-values
- l-values can appear on the left or

right of an =

- x is an l-value

l-values have names

l-values are not temporary

- r-values can ONLY appear on the

right of an =

int x = 3;
int y = x;

Definition: l-values vs r-values
- l-values can appear on the left or

right of an =

- x is an l-value

l-values have names

l-values are not temporary

- r-values can ONLY appear on the

right of an =

- 3 is an r-value

int x = 3;
int y = x;

int x = 3;
int y = x;

Definition: l-values vs r-values
- l-values can appear on the left or

right of an =

- x is an l-value

l-values have names

l-values are not temporary

- r-values can ONLY appear on the

right of an =

- 3 is an r-value

r-values don’t have names

r-values are temporary

int x = 3;
int y = x;

int x = 3;
int y = x;

l-values live until the end of the scope

r-values live until the end of the line

l-values live until the end of the scope

r-values live until the end of the line
(unless you artificially extend their lifetimes)

...more on this later

Find the r-values!
int x = 3;
int *ptr = 0x02248837;
vector<int> v1{1, 2, 3};
auto v4 = v1 + v2;
size_t size = v.size();
v1[1] = 4*i;
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3;
int *ptr = 0x02248837;
vector<int> v1{1, 2, 3};
auto v4 = v1 + v2;
size_t size = v.size();
v1[1] = 4*i;
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837;
vector<int> v1{1, 2, 3};
auto v4 = v1 + v2;
size_t size = v.size();
v1[1] = 4*i;
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3};
auto v4 = v1 + v2;
size_t size = v.size();
v1[1] = 4*i;
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2;
size_t size = v.size();
v1[1] = 4*i;
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2; //v1 + v2 is an r-value
size_t size = v.size();
v1[1] = 4*i;
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2; //v1 + v2 is an r-value
size_t size = v.size(); //v.size()is an r-value
v1[1] = 4*i;
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2; //v1 + v2 is an r-value
size_t size = v.size(); //v.size()is an r-value
v1[1] = 4*i; //4*i is an r-value, v1[1] is an l-value
ptr = &x;
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2; //v1 + v2 is an r-value
size_t size = v.size(); //v.size()is an r-value
v1[1] = 4*i; //4*i is an r-value, v1[1] is an l-value
ptr = &x; //&x is an r-value
v1[2] = *ptr;
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2; //v1 + v2 is an r-value
size_t size = v.size(); //v.size()is an r-value
v1[1] = 4*i; //4*i is an r-value, v1[1] is an l-value
ptr = &x; //&x is an r-value
v1[2] = *ptr; //*ptr is an l-value
MyClass obj;
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2; //v1 + v2 is an r-value
size_t size = v.size(); //v.size()is an r-value
v1[1] = 4*i; //4*i is an r-value, v1[1] is an l-value
ptr = &x; //&x is an r-value
v1[2] = *ptr; //*ptr is an l-value
MyClass obj; //obj is an l-value
x = obj.public_member_variable;

Find the r-values! (Only consider the items on the right of = signs)
int x = 3; //3 is an r-value
int *ptr = 0x02248837; //0x02248837 is an r-value
vector<int> v1{1, 2, 3}; //{1, 2, 3} is an r-value,v1 is an l-value
auto v4 = v1 + v2; //v1 + v2 is an r-value
size_t size = v.size(); //v.size()is an r-value
v1[1] = 4*i; //4*i is an r-value, v1[1] is an l-value
ptr = &x; //&x is an r-value
v1[2] = *ptr; //*ptr is an l-value
MyClass obj; //obj is an l-value
x = obj.public_member_variable; //obj.public_member_variable is l-value

Questions?

Only l-values can be referenced using &
int main() {

vector<int> vec;
change(vec);

}

void change(vector<int>& v){...}
//v is a reference to vec

int main() {
change(7);
//this will compile error

}
//we cannot take a reference to
//a literal!
void change(int& v){...}

Recall: Vector Copy Assignment
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) {

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;
delete[] _elems;
_elems = new T[other._capacity];
std::copy(other._elems, other._elems + other._size, _elems);
return *this;

}

Recall: Vector Copy Assignment
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) {

int main() {
vector<int> vec;
vec = make_me_a_vec(123);

}

but wait ...

Recall: Vector Copy Constructor
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) {

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //make_me_a_vec(123) is an r-value

}

but wait ...

why is this possible?

Only l-values can be

referenced using &!

Recall: Vector Copy Constructor
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) {

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //make_me_a_vec(123) is an r-value

}

but wait ...

rvalues can be bound to const & (we promise not to change them)

Only l-values can be

referenced using &!

Recall: Vector Copy Constructor
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) {

rvalues can be bound to const & (we promise not to change them)
int main() {

vector<int> vec;
vec = make_me_a_vec(123); //make_me_a_vec(123) is an r-value

}

passing by & avoids making unnecessary copies… but does it?

How many arrays will be allocated, copied and destroyed here?
int main() {

vector<int> vec;
vec = make_me_a_vec(123);

}

vector<int> make_me_a_vec(int num) {
vector<int> res;
while (num != 0) {

res.push_back(num%10);
num /= 10;

}
return res;

}

code

How many arrays will be allocated, copied and destroyed here?
int main() {

vector<int> vec;
vec = make_me_a_vec(123); //make_me_a_vec(123) is an r-value

}

- vec is created using the default constructor

- make_me_a_vec creates a vector using the default constructor and returns it

- vec is reassigned to a copy of that return value using copy assignment

- copy assignment creates a new array and copies the contents of the old one

- The original return value’s lifetime ends and it calls its destructor

- vec’s lifetime ends and it calls its destructor

How many arrays will be allocated, copied and destroyed here?
int main() {

vector<int> vec;
vec = make_me_a_vec(123); //make_me_a_vec(123) is an r-value

}

- vec is created using the default constructor

- make_me_a_vec creates a vector using the default constructor and returns it

- vec is reassigned to a copy of that return value using copy assignment

- copy assignment creates a new array and copies the contents of the old one

- The original return value’s lifetime ends and it calls its destructor

- vec’s lifetime ends and it calls its destructor

copy assignment creates a new array and copies the contents of
the old one...
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) {

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;
delete[] _elems;
_elems = new T[other._capacity];
std::copy(other._elems, other._elems + other._size, _elems);
return *this;

}

copy assignment creates a new array and copies the contents of
the old one… what if it didn’t?
template <typename T>
vector<T>& vector<T>::operator=(const vector<T>& other) {

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;
_elems = other._elems;
return *this;

}

Let’s call this move assignment

Is this allowed?

This works!
int main() {

vector<int> vec;
vec = make_me_a_vec(123);

}

This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123);

}

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1;
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123);

}

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1;
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

} //BAD!

How do we know when to use move assignment and
when to use copy assignment?

How do we know when to use move assignment and
when to use copy assignment?

When the item on the right of the = is an
r-value we should use move assignment

How do we know when to use move assignment and
when to use copy assignment?

When the item on the right of the = is an
r-value we should use move assignment

Why? r-values are always about to die, so we
can steal their resources

Using move assignment

Using copy assignment

int main() {
vector<int> vec;
vec = make_me_a_vec(123);

}

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1;
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

} //and vec2 never saw a thing

Questions?

How to make two different assignment operators?
Overload vector::operator= !

How to make two different assignment operators?
Overload vector::operator= !

How? Introducing… the r-value reference
 &&

(This is different from the l-value reference & you have see before)

(it has one more ampersand)

Overloading with &&
int main() {

int x = 1;
change(x); //this will call version 2
change(7); //this will call version 1

}

void change(int&& num){...} //version 1 takes r-values
void change(int& num){...} //version 2 takes l-values
//num is a reference to vec

vector<T>& operator=(const vector<T>& other)
{

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//must copy entire array
delete[] _elems;
_elems = new T[other._capacity];
std::copy(other._elems,
other._elems + other._size,
_elems);
return *this;

}

Copy assignment Move assignment
vector<T>& operator=(vector<T>&& other)

vector<T>& operator=(const vector<T>& other)
{

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//must copy entire array
delete[] _elems;
_elems = new T[other._capacity];
std::copy(other._elems,
other._elems + other._size,
_elems);
return *this;

}

Copy assignment Move assignment
vector<T>& operator=(vector<T>&& other)
{

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//we can steal the array
delete[] _elems;
_elems = other._elems
return *this;

}

This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1; //this will use copy assignment
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

The compiler will pick which vector::operator= to use based
on whether the RHS is an l-value or an r-value

Can we make it even better?
Move assignment
vector<T>& operator=(vector<T>&& other)
{

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//we can steal the array
delete[] _elems;
_elems = other._elems
return *this;

}

Can we make it even better?
Move assignment
vector<T>& operator=(vector<T>&& other)
{

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//we can steal the array
delete[] _elems;
_elems = other._elems
return *this;

}

Technically, these
are also making
copies (using
int/ptr copy
assignment)

Introducing… std::move
- std::move(x) doesn’t do anything except cast x as an r-value

- It is a way to force C++ to choose the && version of a function

int main() {
int x = 1;
change(x); //this will call version 2
change(std::move(x)); //this will call version 1

}

void change(int&& num){...} //version 1 takes r-values
void change(int& num){...} //version 2 takes l-values

Can we make it even better?
Move assignment
vector<T>& operator=(vector<T>&& other)
{

if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//we can steal the array
delete[] _elems;
_elems = other._elems
return *this;

}

We can force
move assignment
rather than copy
assignment of
these ints by
using std::move!

Can we make it even better?
Move assignment
vector<T>& operator=(vector<T>&& other)
{

if (&other == this) return *this;
_size = std::move(other._size);
_capacity = std::move(other._capacity);

//we can steal the array
delete[] _elems;
_elems = std::move(other._elems);
return *this;

}

We can force
move assignment
rather than copy
assignment of
these ints by
using std::move!

This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1; //this will use copy assignment
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

The compiler will pick which vector::operator= to use based
on whether the RHS is an l-value or an r-value

This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1; //this will use copy assignment
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

The compiler will pick which vector::operator= to use based
on whether the RHS is an l-value or an r-value

This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = vec1; //this will use copy construction
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

The compiler will pick which vector::operator= to use based
on whether the RHS is an l-value or an r-value

This works!

But what about this?

int main() {
vector<int> vec;
vec = make_me_a_vec(123); //this will use move assignment
vector<string> vec1 = {“hello”, “world”} //this should use move
vector<string> vec2 = vec1; //this will use copy construction
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

The compiler will pick which vector::operator= to use based
on whether the RHS is an l-value or an r-value

Let’s do it with our copy constructor!

vector<T>(const vector<T>& other) {
if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//must copy entire array
delete[] _elems;
_elems = new T[other._capacity];
std::copy(other._elems,
other._elems + other._size,
_elems);
return *this;

}

copy constructor move constructor

Let’s do it with our copy constructor!

vector<T>(const vector<T>& other) {
if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//must copy entire array
delete[] _elems;
_elems = new T[other._capacity];
std::copy(other._elems,
other._elems + other._size,
_elems);
return *this;

}

copy constructor move constructor
vector<T>(vector<T>&& other)

Let’s do it with our copy constructor!

vector<T>(const vector<T>& other) {
if (&other == this) return *this;
_size = other._size;
_capacity = other._capacity;

//must copy entire array
delete[] _elems;
_elems = new T[other._capacity];
std::copy(other._elems,
other._elems + other._size,
_elems);
return *this;

}

copy constructor move constructor
vector<T>(vector<T>&& other) {

if (&other == this) return *this;

_size = std::move(other._size);
_capacity =

std::move(other._capacity);

//we can steal the array
delete[] _elems;
_elems = std::move(other._elems);
return *this;

}

Where else should we use std::move?

Where else should we use std::move?

Rule of Thumb: Wherever we take in a const &
parameter in a class member function and assign it

to something else in our function

vector::push_back

void push_back(const T& element) {
elems[_size++] = element;
//this is copy assignment

}

Copy push_back Move push_back
void push_back(T&& element) {

elems[_size++] =
std::move(element);

//this forces T’s move
//assignment

}

Be careful with std::move
int main() {

vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = std::move(vec1);
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

Be careful with std::move

- After a variable is moved via std::move, it should never be used until it is

reassigned to a new variable!

- The C++ compiler might warn you about this mistake, but the code above

compiles!

int main() {
vector<string> vec1 = {“hello”, “world”}
vector<string> vec2 = std::move(vec1);
vec1.push_back(“Sure hope vec2 doesn’t see this!”)

}

Where else should we use std::move?

Rule of Thumb: Wherever we take in a const &
parameter in a class member function and assign it

to something else in our function

Don’t use std::move outside of class
definitions, never use it in application code!

TLDR: Move Semantics
- If your class has copy constructor and copy assignment defined, you

should also define a move constructor and move assignment

- Define these by overloading your copy constructor and assignment to be

defined for Type&& other as well as Type& other

- Use std::move to force the use of other types’ move assignments and

constructors

- All std::move(x) does is cast x as an rvalue

- Be wary of std::move(x) in main function code!

Bonus: std::move and RAII
- Recall: RAII means all resources required by an object are acquired in its

constructor and destroyed in its destructor

- To be consistent with RAII, you should have no half-ready resources, such as a

vector whose underlying array has been deallocated

Bonus: std::move and RAII
- Recall: RAII means all resources required by an object are acquired in its

constructor and destroyed in its destructor

- To be consistent with RAII, you should have no half-ready resources, such as a

vector whose underlying array has been deallocated

Is std::move consistent with RAII?

Bonus: std::move and RAII
- Recall: RAII means all resources required by an object are acquired in its

constructor and destroyed in its destructor

- To be consistent with RAII, you should have no half-ready resources, such as a

vector whose underlying array has been deallocated

Is std::move consistent with RAII?

- I say NO!

- This is a sticky language design flaw, C++ has a lot of those! On your own: what

other solutions to the overloading problem can you think of?

