Types and Structs

Types make things better..and sometimes harder..but still better >:(

Recap

C++: Basic Syntax + the STL

Basic syntax The STL
- Semicolons at EOL - Tons of general
- Primitive types (ints, functionality
doubles etc) - Built in classes like maps,
- Basic grammar rules sets, vectors
- Accessed through the
namespace std::

Standard C++: Basic Syntax + std library

Basic :

- Sem
- Prin

doul
- Basi

The STL

Tons of general functionality

\

\

Built in classes like maps, sets, vectors

\

Accessed through the namespace std::

\

Extremely powerful and well-maintained

Namespaces

e MANY things are in the namespace
o e.g. std:cout, std::cin, std::lower_bound

e (S 106B always uses the
declaration, which automatically adds std:: for you

e We won’t (most of the time)
o it’s not good style!

- Types
- Intro to structs
- Sneak peek at streams!

C++ Fundamental Types

int val = 5; //32 bits

char ch = '"F'; //8 bits (usually)

float decimalVall = 5.0; //32 bits (usually)
double decimalvVal2 = 5.0; //64 bits (usually)

bool bVvVal = true; //1 bit

C++ Fundamental Types++

#include <string>

int val = 5; //32 bits

char ch = '"F¥'; //8 bits (usually)

float decimalVall = 5.0; //32 bits (usually)
double decimalval2 = 5.0; //64 bits (usually)
bool bVal = true; //1 bit

std: :string str = "Frankie";

@ Fill in the types!

a = “test”;
b=3.2*5-1;
c =5/ 2;

d(int foo) { return foo / 2; }
e (double foo) { return foo / 2; }
f (double foo) { return int(foo / 2); }

g (double c) {
std::cout << ¢ << std::endl;

@ Fill in the types!

string a = “test”;
double b = 3.2 * 5 - 1;
int e = 5 J Z¢ // int/int — int, what’s the wvalue?

d(int foo) { return foo / 2; }
e (double foo) { return foo / 2; }
f (double foo) { return int(foo / 2); }
g (double c) {
std: :cout << ¢ << std::endl;

@ Fill in the types!

string a = “test”;
double b = 3.2 * 5 - 1;
int e = 5 J Z¢ // int/int — int, what’s the wvalue?

int d(int foo) { return foo / 2; }
double e (double foo) { return foo / 2; }
int f (double foo) { return int (foo / 2); }

g (double c) {
std::cout << ¢ << std::endl;

@ Fill in the types!

string a = “test”;
double b = 3.2 * 5 - 1;
int e = 5 J Z¢ // int/int — int, what’s the wvalue?

int d(int foo) { return foo / 2; }
double e (double foo) { return foo / 2; }
int f (double foo) { return int (foo / 2); }

void g (double c) {
std::cout << ¢ << std::endl;

C++ is a statically typed
language

statically typed: everything
with a name (variables,
functions, etc) is given a
type before runtime

C++ Types in Action

int a = 3;

string D "test";

char func(string c) {
// do something

b = "test two";
func (b) ;

// don’t need to declare type after initialization

Dynamic vs Static typing: Python vs C++

Python

a = 3
"teSt/I

def func(c): char func(string c) {
do something // do something

J

Dynamic vs Static typing: Python vs C++

Python

val = 5; int val = 5;

bVal = true; bool bVal = true;
str = "hi"; string str = "hi";

val bVal str

5 T \\hi”

Dynamic vs Static typing: Python vs C++

Python

val
bVal
str
val
str

val

"hi 1A

true
"hj—"
"hj—"
100

bVal

T

int val = 5;
bool bVvVal = true;

string str = "hi'";

val bVal str

5 T \\hi”

Dynamic vs Static typing: Python vs C++

Python
val int val = 5;
bVal true bool bVal = true;

str "hi" string str = "hi";
val "hai" val = "hj_",'
str 100

str = 100;
val bVal val bVal

"hi" T

Dynamic vs Static typing: Python vs C++

def div_3(x): int div_3(int x) {
return x / 3 return x / 3;
div 3 (“hello”) }

div 3 (“hello”)

Dynamic vs Static typing: Python vs C++

def div_3(x): int div_3(int x) {
return x / 3 return x / 3;
div 3 (“hello”) }

div 3 (Yhello”)
//[CRASH during runtime, -

can’t divide a string

Dynamic vs Static typing: Python vs C++

def div_3(x): int div_3(int x) {
return x / 3 return x / 3;
div 3 (“hello”) }

div 3 (“hello”)

HCIUASIAL oo rrmiime //Compile error: this code will

can’t divide a string
never run

Dynamic vs Static typing: Python vs C++

def add 3(x): int add 3 (int x) {
return x + 3 return x + 3;
add 3("10™) }
add 3("10");

Dynamic vs Static typing: Python vs C++

def add 3(x): int add 3 (int x) {
return x + 3 return x + 3;
add 3("10™) }

add 3 ("10") ;
[returns “103”

Dynamic vs Static typing: Python vs C++

def add 3(x): int add 3 (int x) {
return x + 3 return x + 3;
add 3("10™) }

add 3("10");
[returns “103” [Compile error: “10” is a
string! This code wont run

static typing helps us to
prevent errors hefore our
code runs

C++ to Python, probably

http://www.youtube.com/watch?v=evthRoKoE1o

Static Types + Functions

Python

def div 3 (x) int div 3(int x)

div_3: -> ?°? div_3: int -> int

Static Types + Functions
What are the types of the following functions?

int add(int a, int b);
int, int -> 1int

string echo(string phrase);

string helloworld();

double divide (int a, int b);

Static Types + Functions
What are the types of the following functions?

int add(int a, int b);
int, int -> 1int

string echo(string phrase);
string -> string

string helloworld()
void -> string

double divide (int a, int b);

int, int -> double
S

Questions?

Overloading

- What if we want two versions of a function for two different
types?

- Example: int division vs double division

Overloading

Define two functions with the same name but different types

int half (int x) { // (1)

return x / 2;

double half (double x) { /] (2)

return x / 2;

}

half (3) // uses version (1), returns ?
half (3.0) // uses version (2), returns °?

Overloading

Define two functions with the same name but different types

int half (int x) { // (1)

return x / 2;

double half (double x) { /] (2)

return x / 2;

}

half (3) // uses version (1), returns 1
half (3.0) // uses version (2), returns 1.5

Questions?

rm\

- Intro to structs
- Sneak peek at streams!

struct: a group of named
variables each with their
own type. A way to bundle
different types together

Structs in Code

struct Student ({
string name; // these are called fields
string state; // separate these by semicolons
int age;

g

Student s;

s.name = "Frankie";

s.state = "MN";

s.age = 21; // use . to access fields

Use structs to pass around grouped information

Student s;

s.name = "Frankie";

s.state = "MN";

s.age = 21; // use . to access fields

vold printStudentInfo (Student student) {
cout << s.name << " from " << s.state;
cout << " (" << s.age ")" << endl;

J
D

Use structs to return grouped information

Student randomStudentFrom (std::string state) {
Student s;
s.name = "Frankie";//random = always Frankie
sS.state = state;
s.age = std::randint (0, 100);
return s;

Student foundStudent randomStudentFrom ("MN") ;
cout << foundStudent.name << endl; // Frankie

Abbreviated Syntax to Initialize a struct

Student s;
s.name = "Frankie";
s.state = "MN";

s.age = 21;

//1s the same as

Abbreviated Syntax to Initialize a struct

Student s;
s.name = "Frankie";
s.state = "MN";

s.age = 21;

//1s the same as
Student s = {"Frankie", "MN", 21};

Questions?

std: :pair:AnJSIL
built-in struct with two
fields of any type

- std: :pair is a template: You specify the types of the fields
inside <> for each pair object you make
- The fields in std: :pairs are named £irst and second

std::pair<int, string> numSuffix = {1,"st"};

cout << numSuffix.first << numSuffix.second;

//prints 1st

Use to return success + result

std::pair<bool, Student> lookupStudent (string name) {

Student blank;
1f (found(name)) return std::make pair (false, blank);

Student result = getStudentWithName (name) ;

return std::make pair(true, result);

}
std::pair<bool, Student> output = lookupStudent (“Keith”);

Use to return success + result

std::pair<bool, Student> lookupStudent (string name) {

Student blank;

1f (notFound(name)) return std::make pair(false, blank);
Student result = getStudentWithName (name) ;

return std::make pair(true, result);

}
std::pair<bool, Student> output = lookupStudent (“Keith”);

To avoid specifying the types of a pair, use std: :make pair (fieldl,

field2)

Questions?

Aside: Type Deduction with

auto: Keyword used in lieu
of type when declaring a
variable, tells the compiler
to deduce the type.

Type Deduction using auto

// What types are these?

auto a = 3;

auto b = 4.3;

auto ¢ = YX’;

auto d = “Hello”;

auto e = std::make pair(3, “Hello”);

does not mean that the variable doesn’t have a type.

It means that the type is deduced by the compiler.

Type Deduction using auto

// What types are these?

auto a = 3;

auto b = 4.3;

auto ¢ = YX’;

auto d = “Hello”;

auto e = std::make pair(3, “Hello”);

Answers: int, double, char, char* (a C string), std::pair<int, char*>
does not mean that the variable doesn’t have a type.

It means that the type is deduced by the compiler.

Il auto does not mean that
the variable doesn’t have a

type.

It means that the type is
deduced by the compiler.

Code Demol!

- Sneak peek at streams!

stream: an abstraction for
input/output. Streams
convert between data and

the string representation
of data.

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5
// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// structs?

Student s = {"Frankie", "MN", 21};

std: :cout << s << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// structs?

Student s = {"Frankie", "MN", 21};

Ste—eott S Sterrerc -

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// structs?

Student s = {"Frankie", "MN", 21};

std::cout << s.name << s.age << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// Any primitive type + most from the STL work!
// For other types, you will have to write the

<< operator yourself!

