
Types and Structs
Types make things better...and sometimes harder...but still better >:(

Recap

 C++: Basic Syntax + the STL

 Basic syntax

- Semicolons at EOL

- Primitive types (ints,

doubles etc)

- Basic grammar rules

 The STL

- Tons of general

functionality

- Built in classes like maps,

sets, vectors

- Accessed through the

namespace std::

 Basic syntax

- Semicolons at EOL

- Primitive types (ints,

doubles etc)

- Basic grammar rules

Standard C++: Basic Syntax + std library
 The STL

- Tons of general functionality

- Built in classes like maps, sets, vectors

- Accessed through the namespace std::

- Extremely powerful and well-maintained

Namespaces
● MANY things are in the std:: namespace

○ e.g. std::cout, std::cin, std::lower_bound

● CS 106B always uses the using namespace std;

declaration, which automatically adds std:: for you

● We won’t (most of the time)

○ it’s not good style!

Today
- Types

- Intro to structs

- Sneak peek at streams!

C++ Fundamental Types
int val = 5; //32 bits
char ch = 'F'; //8 bits (usually)
float decimalVal1 = 5.0; //32 bits (usually)
double decimalVal2 = 5.0; //64 bits (usually)
bool bVal = true; //1 bit

C++ Fundamental Types++
#include <string>
int val = 5; //32 bits
char ch = 'F'; //8 bits (usually)
float decimalVal1 = 5.0; //32 bits (usually)
double decimalVal2 = 5.0; //64 bits (usually)
bool bVal = true; //1 bit
std::string str = "Frankie";

🧠 Fill in the types!
_____ a = “test”;
_____ b = 3.2 * 5 - 1;
_____ c = 5 / 2;

_____ d(int foo) { return foo / 2; }
_____ e(double foo) { return foo / 2; }
_____ f(double foo) { return int(foo / 2); }

_____ g(double c) {
std::cout << c << std::endl;

}

🧠 Fill in the types!
string a = “test”;
double b = 3.2 * 5 - 1;
int c = 5 / 2; // int/int → int, what’s the value?

_____ d(int foo) { return foo / 2; }
_____ e(double foo) { return foo / 2; }
_____ f(double foo) { return int(foo / 2); }

_____ g(double c) {
std::cout << c << std::endl;

}

🧠 Fill in the types!
string a = “test”;
double b = 3.2 * 5 - 1;
int c = 5 / 2; // int/int → int, what’s the value?

int d(int foo) { return foo / 2; }
double e(double foo) { return foo / 2; }
int f(double foo) { return int(foo / 2); }

_____ g(double c) {
std::cout << c << std::endl;

}

🧠 Fill in the types!
string a = “test”;
double b = 3.2 * 5 - 1;
int c = 5 / 2; // int/int → int, what’s the value?

int d(int foo) { return foo / 2; }
double e(double foo) { return foo / 2; }
int f(double foo) { return int(foo / 2); }

void g(double c) {
std::cout << c << std::endl;

}

C++ is a statically typed
language

statically typed: everything
with a name (variables,
functions, etc) is given a
type before runtime

Definition

C++ Types in Action
 int a = 3;
 string b = "test";

 char func(string c) {
 // do something
}

 b = "test two";

 func(b);

 // don’t need to declare type after initialization

Dynamic vs Static typing: Python vs C++

a = 3
b = "test”

def func(c):
 # do something

int a = 3;
string b = "test”;

char func(string c) {
 // do something
}

Python C++

Dynamic vs Static typing: Python vs C++

 val = 5;
 bVal = true;
 str = "hi";

 int val = 5;
 bool bVal = true;
 string str = "hi";

Python C++

val bVal

T

str

"hi"5

val bVal str

5 T “hi”

Dynamic vs Static typing: Python vs C++

 val = 5
 bVal = true
 str = "hi"
 val = "hi"
 str = 100

 int val = 5;
 bool bVal = true;
 string str = "hi";
 val = "hi";
 str = 100;

Python C++

val bVal str

val bVal
str

T “hi”
100"hi" T "hi" 100

 int val = 5;
 bool bVal = true;
 string str = "hi";

C++

val bVal str

5 T “hi”

Dynamic vs Static typing: Python vs C++

 val = 5
 bVal = true
 str = "hi"
 val = "hi"
 str = 100

 int val = 5;
 bool bVal = true;
 string str = "hi";
 val = "hi";
 str = 100;

Python C++

val bVal str

val bVal
str

T “hi”
100"hi" T "hi" 100

Dynamic vs Static typing: Python vs C++

def div_3(x):

return x / 3

div_3(“hello”)

int div_3(int x){

return x / 3;

}

div_3(“hello”)

Python C++

Dynamic vs Static typing: Python vs C++

def div_3(x):

return x / 3

div_3(“hello”)

//CRASH during runtime,

can’t divide a string

int div_3(int x){

return x / 3;

}

div_3(“hello”)

Python C++

Dynamic vs Static typing: Python vs C++

def div_3(x):

return x / 3

div_3(“hello”)

//CRASH during runtime,

can’t divide a string

int div_3(int x){

return x / 3;

}

div_3(“hello”)
//Compile error: this code will

never run

Python C++

Dynamic vs Static typing: Python vs C++

def add_3(x):

return x + 3

add_3("10")

int add_3(int x){

return x + 3;

}

add_3("10");

Python C++

Dynamic vs Static typing: Python vs C++

def add_3(x):

return x + 3

add_3("10")

//returns “103”

int add_3(int x){

return x + 3;

}

add_3("10");

Python C++

Dynamic vs Static typing: Python vs C++

def add_3(x):

return x + 3

add_3("10")

//returns “103”

int add_3(int x){

return x + 3;

}

add_3("10");
//Compile error: “10” is a

string! This code wont run

Python C++

static typing helps us to
prevent errors before our
code runs

C++ to Python, probably

http://www.youtube.com/watch?v=evthRoKoE1o

Static Types + Functions
Python C++

def div_3(x)

div_3: __ -> ??

int div_3(int x)

div_3: int -> int

int add(int a, int b);
int, int -> int

string echo(string phrase);

string helloworld();

double divide(int a, int b);

Static Types + Functions
What are the types of the following functions?

int add(int a, int b);
int, int -> int

string echo(string phrase);
string -> string

string helloworld();
void -> string

double divide(int a, int b);
int, int -> double

Static Types + Functions
What are the types of the following functions?

Questions?

Overloading
- What if we want two versions of a function for two different

types?

- Example: int division vs double division

int half(int x) { // (1)
return x / 2;

}

double half(double x) { // (2)
return x / 2;

}
half(3) // uses version (1), returns ?
half(3.0) // uses version (2), returns ?

Overloading
Define two functions with the same name but different types

int half(int x) { // (1)
return x / 2;

}

double half(double x) { // (2)
return x / 2;

}
half(3) // uses version (1), returns 1
half(3.0) // uses version (2), returns 1.5

Overloading
Define two functions with the same name but different types

Questions?

Today
- Types

- Intro to structs

- Sneak peek at streams!

struct: a group of named
variables each with their
own type. A way to bundle
different types together

Definition

Structs in Code
struct Student {

string name; // these are called fields
string state; // separate these by semicolons
int age;

};

Student s;
s.name = "Frankie";
s.state = "MN";
s.age = 21; // use . to access fields

Use structs to pass around grouped information
 Student s;
 s.name = "Frankie";
 s.state = "MN";
 s.age = 21; // use . to access fields

void printStudentInfo(Student student) {
cout << s.name << " from " << s.state;
cout << " (" << s.age ")" << endl;

}

Use structs to return grouped information
 Student randomStudentFrom(std::string state) {

Student s;
s.name = "Frankie";//random = always Frankie
s.state = state;
s.age = std::randint(0, 100);
return s;

}

 Student foundStudent = randomStudentFrom("MN");
 cout << foundStudent.name << endl; // Frankie

Abbreviated Syntax to Initialize a struct
 Student s;
 s.name = "Frankie";
 s.state = "MN";
 s.age = 21;

 //is the same as ...

Abbreviated Syntax to Initialize a struct
 Student s;
 s.name = "Frankie";
 s.state = "MN";
 s.age = 21;

 //is the same as ...
 Student s = {"Frankie", "MN", 21};

Questions?

std::pair: An STL
built-in struct with two
fields of any type

Definition

std::pair

- std::pair is a template: You specify the types of the fields

inside <> for each pair object you make

- The fields in std::pairs are named first and second

std::pair<int, string> numSuffix = {1,"st"};

cout << numSuffix.first << numSuffix.second;
//prints 1st

Use std::pair to return success + result
std::pair<bool, Student> lookupStudent(string name) {

 Student blank;

 if (found(name)) return std::make_pair(false, blank);

 Student result = getStudentWithName(name);

 return std::make_pair(true, result);

}

std::pair<bool, Student> output = lookupStudent(“Keith”);

Use std::pair to return success + result

To avoid specifying the types of a pair, use std::make_pair(field1,
field2)

std::pair<bool, Student> lookupStudent(string name) {

 Student blank;

 if (notFound(name)) return std::make_pair(false, blank);

 Student result = getStudentWithName(name);

 return std::make_pair(true, result);

}

std::pair<bool, Student> output = lookupStudent(“Keith”);

Questions?

Aside: Type Deduction with auto

auto: Keyword used in lieu
of type when declaring a
variable, tells the compiler
to deduce the type.

Definition

// What types are these?
auto a = 3;
auto b = 4.3;
auto c = ‘X’;
auto d = “Hello”;
auto e = std::make_pair(3, “Hello”);

Type Deduction using auto

📝 auto does not mean that the variable doesn’t have a type.
It means that the type is deduced by the compiler.

// What types are these?
auto a = 3;
auto b = 4.3;
auto c = ‘X’;
auto d = “Hello”;
auto e = std::make_pair(3, “Hello”);

Type Deduction using auto

📝 auto does not mean that the variable doesn’t have a type.
It means that the type is deduced by the compiler.

Answers: int, double, char, char* (a C string), std::pair<int, char*>

‼ auto does not mean that
the variable doesn’t have a
type.

It means that the type is
deduced by the compiler.

Code Demo!

Today
- Types

- Intro to structs

- Sneak peek at streams!

stream: an abstraction for
input/output. Streams
convert between data and
the string representation
of data.

Definition

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // structs?
 Student s = {"Frankie", "MN", 21};
 std::cout << s << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // structs?
 Student s = {"Frankie", "MN", 21};
 std::cout << s << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // structs?
 Student s = {"Frankie", "MN", 21};
 std::cout << s.name << s.age << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // Any primitive type + most from the STL work!
 // For other types, you will have to write the

<< operator yourself!

