
Streams
How can we convert between string-represented data and the real

thing?

Recap
- Everything with a name in your program has a type

- Strong type systems prevent errors before your code runs!

- Structs are a way to bundle a bunch of variables of many types

- std::pair is a type of struct that had been defined for you and is in

the STL

- So you access it through the std:: namespace (std::pair)

- auto is a keyword that tells the compiler to deduce the type of a

variable, it should be used when the type is obvious or very

cumbersome to write out

Today
- Streams!

- Input streams

- Output streams

- File streams and string

streams!

stream: an abstraction for
input/output. Streams
convert between data and
the string representation
of data.

Definition

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // structs?
 Student s = {"Frankie", "MN", 21};
 std::cout << s << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // structs?
 Student s = {"Frankie", "MN", 21};
 std::cout << s << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // structs?
 Student s = {"Frankie", "MN", 21};
 std::cout << s.name << s.age << std::endl;

A stream you’ve used: cout
 std::cout << 5 << std::endl; // prints 5
 // use a stream to print any primitive type!
 std::cout << "Frankie" << std::endl;
 // Mix types!
 std::cout << "Frankie is " << 21 << std::endl;
 // Any primitive type + most from the STL work!
 // For other types, you will have to write the

<< operator yourself!

std::cout is an output
stream. It has type
std::ostream

Output Streams
- Have type std::ostream
- Can only send data using the << operator

- Converts any type into string and sends it to the stream

Output Streams
- Have type std::ostream
- Can only send data using the << operator

- Converts any type into string and sends it to the stream

- std::cout is the output stream that goes to the console

 std::cout << 5 << std::endl;
 // converts int value 5 to string “5”
 // sends “5” to the console output stream

Output File Streams
- Have type std::ofstream
- Only send data using the << operator

- Converts data of any type into a string and sends it to the

file stream

Output File Streams
- Have type std::ofstream
- Only send data using the << operator

- Converts data of any type into a string and sends it to the

file stream

- Must initialize your own ofstream object linked to your file

 std::ofstream out(“out.txt”);
 // out is now an ofstream that outputs to out.txt
 out << 5 << std::endl; // out.txt contains 5

std::cout is a global constant
object that you get from
#include <iostream>

std::cout is a global constant
object that you get from #include
<iostream>

To use any other output stream, you
must first initialize it!

Code Demo: ostreams

Input Streams!

What does this code do?
 int x;
 std::cin >> x;

What does this code do?
 int x;
 std::cin >> x;
 // what happens if input is 5 ?
 // how about 51375 ?
 // how about 5 1 3 7 5?

std::cin is an input
stream. It has type
std::istream

Intput Streams
- Have type std::istream
- Can only receive strings using the >> operator

- Receives a string from the stream and converts it to data

Input Streams
- Have type std::istream
- Can only receive strings using the >> operator

- Receives a string from the stream and converts it to data

- std::cin is the input stream that gets input from the console

 int x;
 string str;
 std::cin >> x >> str;
 //reads exactly one int then 1 string from console

Nitty Gritty Details: std::cin
- First call to std::cin >> creates a command line prompt

that allows the user to type until they hit enter

- Each >> ONLY reads until the next whitespace

- Whitespace = tab, space, newline

- Everything after the first whitespace gets saved and used the

next time std::cin >> is called

- The place its saved is called a buffer!

- If there is nothing waiting in the buffer, std::cin >>

creates a new command line prompt

- Whitespace is eaten: it won’t show up in output

Think of a std::istream as a sequence of characters

4 2 a b 4 \n

position

int x; string y; int z;
cin >> x;
cin >> y;
cin >> z;

Think of a std::istream as a sequence of characters

4 2 a b 4 \n

position

int x; string y; int z;
cin >> x; //42 put into x
cin >> y;
cin >> z;

Think of a std::istream as a sequence of characters

4 2 a b 4 \n

position

int x; string y; int z;
cin >> x; //42 put into x
cin >> y;
cin >> z;

Think of a std::istream as a sequence of characters

4 2 a b 4 \n

position

int x; string y; int z;
cin >> x;
cin >> y; //ab put into y
cin >> z;

Think of a std::istream as a sequence of characters

4 2 a b 4 \n

position

int x; string y; int z;
cin >> x;
cin >> y; //ab put into y
cin >> z;

Think of a std::istream as a sequence of characters

4 2 a b 4 \n

position

int x; string y; int z;
cin >> x;
cin >> y;
cin >> z; //4 put into z

Input Streams: When things go wrong
 string str;
 int x;
 std::cin >> str >> x;
 //what happens if input is blah blah?
 std::cout << str << x;

Think of a std::istream as a sequence of characters

b l a h b l a h \n

position

string str; int x;
std::cin >> str >> x;

Think of a std::istream as a sequence of characters

b l a h b l a h \n

position

string str; int x;
std::cin >> str >> x;

Think of a std::istream as a sequence of characters

b l a h b l a h \n

position

string str; int x;
std::cin >> str >> x;

Think of a std::istream as a sequence of characters

b l a h b l a h \n

position

string str; int x;
std::cin >> str >> x;

Think of a std::istream as a sequence of characters

b l a h b l a h \n

position

string str; int x;
std::cin >> str >> x;

Input Streams: When things go wrong
 string str;
 int x;
 std::cin >> str >> x;
 //what happens if input is blah blah?
 std::cout << str << x;
 //once an error is detected, the input stream’s
 //fail bit is set, and it will no longer accept
 //input

Input Streams: When things go wrong

 int age; double hourlyWage;
 cout << "Please enter your age: ";
 cin >> age;
 cout << "Please enter your hourly wage: ";
 cin >> hourlyWage;
 //what happens if first input is 2.17?

Think of a std::istream as a sequence of characters

2 . 1 7 \n

position

 cin >> age;
 cout << "Wage: ";
 cin >> hourlyWage;

Think of a std::istream as a sequence of characters

2 . 1 7 \n

position

 cin >> age;
 cout << "Wage: ";
 cin >> hourlyWage;

Think of a std::istream as a sequence of characters

2 . 1 7 \n

position

 cin >> age; // age = 2
 cout << "Wage: ";
 cin >> hourlyWage;

Reads until it finds
something that isn’t an int!

Think of a std::istream as a sequence of characters

2 . 1 7 \n

position

 cin >> age;
 cout << "Wage: ";
 cin >> hourlyWage;// =.17

Playground (istreams.cpp)

std::cin is dangerous to use on its own!

Reading using >> extracts a single “word” or type
including for strings

To read a whole line, use
std::getline(istream& stream, string& line);

How to use getline

 std::string line;
 std::getline(cin, line); //now line has changed!
 //say the user entered “Hello World 42!”
 std::cout << line << std::endl;
 //should print out“Hello World 42!”

- Notice getline(istream& stream, string&
line)takes in both parameters by reference!

Don’t mix >> with getline!
- >> reads up to the next whitespace character and does not go

past that whitespace character.

- getline reads up to the next delimiter (by default, ‘\n’), and

does go past that delimiter.

- Don’t mix the two or bad things will happen!

📝 Note for 106B: Don’t use >> with Stanford libraries, they use
getline.

Input File Streams
- Have type std::ifstream
- Only receives strings using the >> operator

- Receives strings from a file and converts it to data of any

type

Input File Streams
- Have type std::ifstream
- Only receives strings using the >> operator

- Receives strings from a file and converts it to data of any

type

- Must initialize your own ofstream object linked to your file

 std::ifstream in(“out.txt”);
 // in is now an ifstream that reads from out.txt
 string str;
 in >> str; // first word in out.txt goes into str

std::cin is a global constant
object that you get from
#include <iostream>

std::cin is a global constant object
that you get from #include
<iostream>

To use any other input stream, you must
first initialize it!

Code Demo: istreams

Stringstreams

Stringstreams
- Input stream: std::istringstream

- Give any data type to the istringstream, it’ll store it as a

string!

- Output stream: std::ostringstream

- Make an ostringstream out of a string, read from it

word/type by word/type!

- The same as the other i/ostreams you’ve seen!

ostringstreams

string judgementCall(int age, string name,
bool lovesCpp)

{
std::ostringstream formatter;
formatter << name <<", age " << age;
if(lovesCpp) formatter << ", rocks.";
else formatter << " could be better";
return formatter.str();

}

istringstreams
Student reverseJudgementCall(string judgement)
{ //input: “Frankie age 22, rocks”

std::istringstream converter;
string fluff; int age; bool lovesCpp; string name;
converter >> name;
converter >> fluff;
converter >> age;
converter >> fluff;
string cool;
converter >> cool;
if(cool == "rocks") return Student{name, age, "bliss"};
else return Student{name, age, "misery"};

}// returns:

istringstreams
Student reverseJudgementCall(string judgement)
{ //input: “Frankie age 22, rocks”

std::istringstream converter;
string fluff; int age; bool lovesCpp; string name;
converter >> name;
converter >> fluff;
converter >> age;
converter >> fluff;
string cool;
converter >> cool;
if(cool == "rocks") return Student{name, age, "bliss"};
else return Student{name, age, "misery"};

}// returns: {“Frankie”, 22, “bliss”}

Lets write getInteger!

Recap
- Streams convert between data of any type and the string

representation of that data

- Streams have an endpoint: console for cin/cout, files for i/o fstreams,

string variables for i/o streams where they read in a string from or

output a string to.

- To send data (in string form) to a stream, use stream_name <<
data

- To extract data from a stream, use stream_name >> data, and

the stream will try to convert a string to whatever type data is

