Streams

How can we convert between string-represented data and the real

thing?

Recap

- Everything with a name in your program has a type

- Strong type systems prevent errors before your code runs!

- Structs are a way to bundle a bunch of variables of many types

- std:pair is a type of struct that had been defined for you and is in
the STL

- So you access it through the std:: namespace (std::pair)

- auto is a keyword that tells the compiler to deduce the type of a
variable, it should be used when the type is obvious or very
cumbersome to write out

- Streams!
- Input streams
- Output streams
- File streams and string
streams!

stream: an abstraction for
input/output. Streams
convert between data and

the string representation
of data.

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5
// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// structs?

Student s = {"Frankie", "MN", 21};

std: :cout << s << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// structs?

Student s = {"Frankie", "MN", 21};

Ste—eott S Sterrerc -

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// structs?

Student s = {"Frankie", "MN", 21};

std::cout << s.name << s.age << std::endl;

A stream you’ve used: cout

std::cout << 5 << std::endl; // prints 5

// use a stream to print any primitive type!
std::cout << "Frankie" << std::endl;

// Mix types!

std::cout << "Frankie 1s " << 21 << std::endl;
// Any primitive type + most from the STL work!
// For other types, you will have to write the

<< operator yourself!

std: :cout IS an output
stream. It has type
std: :ostream

Output Streams
- Have type

- Can only send data using the operator
- Converts any type into string and sends it to the stream

Output Streams
- Have type

- Can only send data using the §§4 operator
- Converts any type into string and sends it to the stream

- is the output stream that goes to the console

std: :cout << 5 << std::endl;

// converts int value 5 to string “5”7

// sends “5”7 to the console output stream

Output File Streams
- Have type

- Only send data using the {4 operator
- Converts data of any type into a string and sends it to the
file stream

Output File Streams
- Have type

- Only send data using the {4 operator
- Converts data of any type into a string and sends it to the
file stream

- Must initialize your own object linked to your file

std::ofstream out (Yout.txt”);

// out 1is now an ofstream that outputs to out.txt

out << 5 << std::endl; // out.txt contains 5

std: :cout IS a global constant
object that you get from

include <i1ostream>

std: :cout IS a global constant
object that you get from #include
<l1ostream>

To use any other output stream, you
must first initialize it!

Code Demo: ostreams

Input Streams!

What does this code do?

int x;

std::cin >> x;

What does this code do?

int x;

std::cin >> x;

// what happens if input is 5 ?
// how about 51375 ?
// how about 5 1 3 7 57

std: :cin IS an input
stream. It has type
std::1stream

Intput Streams

- Have type

- Can only receive strings using the operator
- Receives a string from the stream and converts it to data

Input Streams

- Have type

- Can only receive strings using the pgg operator
- Receives a string from the stream and converts it to data

- is the input stream that gets input from the console

int x;
string str;
std::cin >> x >> str;

//reads exactly one int then 1 string from console

Nitty Gritty Details:

-

First call to creates a command line prompt
that allows the user to type until they hit enter
Each pg ONLY reads until the next whitespace

- Whitespace = tab, space, newline

Everything after the first whitespace gets saved and used the
next time PYSEPERERRER is called

- The place its saved is called a buffer!
If there is nothing waiting in the buffer,
creates a new command line prompt
Whitespace is eaten: it won’t show up in output

Think of a std: : istream as a sequence of characters

4 2 a b 4 | \n

x; string y; int z;
>> X;

>> y;
>> Z;

Think of a std: : istream as a sequence of characters

4 2 a b 4 | \n

X; string y; int z;
>> x; //42 put into x

>> y;
>> Z;

Think of a std: : istream as a sequence of characters

4 2 a b 4 | \n

X; string y; int z;
>> x; //42 put into x

>> y;
>> Z;

Think of a std: : istream as a sequence of characters

4 2 a b 4 | \n

X; string y; int z;
>> X;

>> y; //ab put into y
>> z;

Think of a std: : istream as a sequence of characters

4 2 a b 4 | \n

X; string y; int z;
>> X;

>> y; //ab put into y
>> z;

Think of a std: : istream as a sequence of characters

4 2 a b 4 | \n

X; string y; int z;
>> X;

>> y;
>> z; //4 put into z

Input Streams: When things go wrong

string str;

int x;

std::cin >> str >> Xx;

//what happens if input is blah blah?
std: :cout << str << x;

Think of a std: : istream as a sequence of characters

b | | | al| h b | | | al| h|\n

string str; int x;

std::cin >> str >> x;

Think of a std: : istream as a sequence of characters

b | | | al| h b | | | al| h|\n

string str; 1int Xx;

std: :cin >> str >> x;

Think of a std: : istream as a sequence of characters

b | | | al| h b | | | al| h|\n

string str; 1int Xx;

std: :cin >> str >> x;

Think of a std: : istream as a sequence of characters

b | | | al| h b | | | al| h|\n

string str; 1int Xx;

std::cin >> str >> x;

Think of a std: :istream as a sequence of characters

<8 \
g ANy
RCEER b\
v \
u:’{\,g"-‘ a | \ s
b | a h b | 5® af S
W P “ > / b [N R l
g s U st
% f § AR N
¥ - I S 2
LY == s
& B
2 \72' £ \.'} %
\ ., {u &
AR

string str; 1int Xx;

std::cin >> str >> x;

Input Streams: When things go wrong

string str;

int x;

std::cin >> str >> Xx;

//what happens 1if input is blah blah?

std::cout << str << x;

//once an error 1s detected, the input stream’s
//fail bit is set, and it will no longer accept
//input

Input Streams: When things go wrong

int age; double hourlyWage;

cout << "Please enter your age: ";

cin >> age;

cout << "Please enter your hourly wage: ";
cin >> hourlyWage;

//what happens if first input is 2.177?

Think of a std: : istream as a sequence of characters

2 . 1 7 | \n

cin >> age;
cout << "Wage: ";

cin >> hourlyWage;

Think of a std: : istream as a sequence of characters

2 . 1 7 | \n

cin >> age;

cout << "Wage: ";
cin >> hourlyWage;

Think of a std: : istream as a sequence of characters

2 . 1 7 | \n

Reads until it finds

something that isn’t an int!

cin >> age; // age

cout << "Wage: ";
cin >> hourlyWage;

Think of a std: : istream as a sequence of characters

2 . 1 7 | \n

cin >> age;

cout << "Wage: ";
cin >> hourlyWage;// =.17

Playground (istreams.cpp)

is dangerous to use on its own!

Reading using >> extracts a single “word” or type
including for strings

To read a whole line, use

std::getline(istream& stream, string& line);

How to use getline

- Notice getline (istream& stream, stringé
1ine) takes in both parameters by referencel!

std::string line;

std::getline(cin, line); //now line has changed!
//say the user entered “Hello World 42!”
std::cout << line << std::endl;

//should print out“Hello World 42!”

Don’t mix >> with getline!

- >> reads up to the next whitespace character and does not go
past that whitespace character.

- getline reads up to the next delimiter (by default, \n’), and
does go past that delimiter.

- Don’t mix the two or bad things will happen!

Input File Streams

sVl std: : i fstream

- Only receives strings using the g operator
- Receives strings from a file and converts it to data of any

type

Input File Streams

sVl std: : i fstream

- Only receives strings using the g operator
- Receives strings from a file and converts it to data of any

type
- Must initialize your own object linked to your file

std::ifstream in (Yout.txt”);
// 1n 1s now an 1fstream that reads from out.txt

string str;
in >> str; // first word in out.txt goes into str

std: :cin IS a global constant
object that you get from

include <i1ostream>

std: :cin iS a global constant object
that you get from #include
<l1ostream>

To use any other input stream, you must
first initialize it!

Code Demo: istreams

Stringstreams

Stringstreams

- Input stream: std:istringstream
- Give any data type to the istringstream, it’ll store it as a
string!
- Output stream: std::ostringstream
- Make an ostringstream out of a string, read from it
word/type by word/type!
- The same as the other i/ostreams you’ve seen!

ostringstreams

string judgementCall (int age, string name,
bool lovesCpp)

std::ostringstream formatter;

formatter << name <<", age " << age;
1f (lovesCpp) formatter << ", rocks.";
else formatter << " could be better";

return formatter.str () ;

Istringstreams

Student reversedJudgementCall (string judgement)
{ //input: “Frankie age 22, rocks”
std::1stringstream converter;

string fluff;
converter >>
converter >>
converter >>
converter >>
string cool;
converter >>

int age; bool lovesCpp; string name;
name;
fluff;
age;
fluff;

cool;

1f(cool == "rocks") return Student{name, age, "bliss"};
else return Student{name, age, "misery"};

}// returns:

Istringstreams

Student reversedJudgementCall (string judgement)
{ //input: “Frankie age 22, rocks”
std::1stringstream converter;

string fluff;
converter >>
converter >>
converter >>
converter >>
string cool;
converter >>

int age; bool lovesCpp; string name;
name;
fluff;
age;
fluff;

cool;

1f(cool == "rocks") return Student{name, age, "bliss"};
else return Student{name, age, "misery"};
}// returns: {“Frankie”, 22, “bliss”}

Lets write getinteger!

Recap

- Streams convert between data of any type and the string
representation of that data

- Streams have an endpoint: console for cin/cout, files for i/o fstreams,
string variables for i/o streams where they read in a string from or
output a string to.

- To send data (in string form) to a stream, use stream name <<
data

- To extract data from a stream, use stream name >> data,and
the stream will try to convert a string to whatever type data is

