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Four Encounters  w i t h  Sierpif iski 's  Gasket  1 
Ian Stewart 

Mathematicians would not be happy merely with simple, 
lusty configurations. Beyond these their curiosity extends 
to psychopathic patients, each of whom has an individual 
case history resembling no other; these are the pathological 
curves of mathematics. 

Edward Kasner and James Newman 
Mathematics and the Imagination 

One of the most fascinating features of mathematics  is the 
way  in which the same idea crops up  again and again 
in apparent ly unrelated areas. Over  the last few years, 
I have been haunted  by  the object that Benoit Mandel- 
brot  [1] has christened SierpMski's gasket. It is the trian- 
gular fractal shown in Figure 1. Nowadays ,  fractals are 
respectable, and the sentiments expressed in the above 
quotation seem old-fashioned: it shows how much  atti- 
tudes have changed. Most  people's,  anyway. Sierpifiski's 
gasket arises naturally in many  branches of mathematics,  
and my aim is to convince you that wi thout  it, mathemat-  
ics would  be the poorer. But first, a few words  about  the 
man  himselL 

year Sierpifiski gave the first systematic lecture course 
ever taught  on set theory. He publ ished a book based 
on it in 1912, which was among the first texts on that 
subject. Sierpifiski had found his subject, and the bulk of 
his subsequent  research was in set theory and point set 
topology. 

Explorer of the Infinite 

W a d a w  Sierpi~ski was born  in Warsaw, Poland,  on 14 
March 1882. His father Konstanty Sierpifiski was a doc- 
tor. My source, Kasimierz Kuratowski [2], Vol. 1, fails 
to record any details about  his mother. Sierpi~ski stud- 
ied under  the number  theorist  G. Voronoi, and his early 
work  was also in number  theory, a topic to which he re- 
peatedly  returned in later life. He obtained a doctorate  in 
1906, and by 1909 he had  moved  to the Universi ty Jean 
Casimir in Lvov, becoming a professor there in 1910. The 
year  1909 is more significant, however, because in that 

1 This article is an expanded and somewhat rewritten version of the 
Lonseth Lecture given at Oregon State University, Corvallis on 14 May 
1991, and the London Mathematical Society Popular Lecture given at 
Sheffield University on 17 June 1991 and Imperial College London on 
28 June 1991. 
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Figure 1. The SierpiIiski gasket. 

During the First World War, Sierpi~ski was interned 
in Russia, first at Viatka and then in Moscow. There he 
worked with the Russian mathematician N. Lusin on 
projective sets and real functions. Their first joint pa- 
per appeared in 1917 and the last in 1929. At the end 
of the war, Sierpir~ski returned to Lvov, but almost im- 
mediately became a professor at the now reestablished 
University of Warsaw. The place was a hotbed of Polish 
mathematics, specialising in set theory and foundational 
matters, with people such as Zygmunt Janiszewski, Ste- 
fan Mazurkiewicz, and Jan Lukasiewicz. Together with 
Sierpifiski, the first two started their own journal, Funda- 
menta Mathematicae, which exists to this day. Lvov, too, 
became a major centre of Polish mathematics under Ste- 
fan Banach--see Ciesielski [3, 4] for the atmosphere of 
this period, including the story of the famous "Scottish 
Caf4" in Lvov. 

Between the wars, Sierpifiski's talents flourished. He 
was always prolific: his collected works include 720 pa- 
pers published between 1906 and 1968, 106 expository 
articles, 50 books (plus 7 at the level of secondary edu- 
cation), and 12 mimeographed sets of lecture notes. The 
start of World War II found him still in Warsaw, where he 
continued his scientific work as best he could, teaching 

clandestine courses at the university to small audiences. 
After the uprising of 1944, he was deported by the Ger- 
mans to the region around Krak6w. In 1945, he briefly 
lectured at the Jagiellonian University of Krak6w, be- 
fore returning once more to Warsaw. In 1958, he wrote 
a major monograph, Cardinal and Ordinal Numbers. He 
remained very active if~ administrative matters and re- 
ceived a number of important prizes and other honours 
from the Polish government. He died in Warsaw on 21 
October 1969. Following Sierpifiski's wishes, his grave 
bears just two words (in Polish): Explorer of the Infinite. 

Encounter 1: Sierpil~ski's Encounter with 
Sierpiliski's Gasket (Wadaw Sierpifiski, 1915) 

My claim is that (well before Koch, Peano, and Sierpi~ski) the 
tower of Gustav Eiffel built in Paris deliberately incorporates 
the idea of a fractal curve full of branch points. 

Benoit Mandelbrot 
The Fractal Geometry of Nature 

The gasket made its first appearance in an article only 
three and a half pages long [5]. (Though, being pub- 
lished in Comptes Rendus, it couldn't have been very 
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much longer without  infringing the rule brought  i n - - i t  
is s a i d - -  to prevent Augustin-Louis Cauchy from filling 
every issue with vast screeds.) A more detailed treatment 
followed a year later [6]; see also Ref. 2. The gasket 's role 
was to provide an example of "a curve simultaneously 
Cantorian and Jordanian, of which every point is a point 
of ramification"; less formally, a curve that crosses itself 
at every point. A point of ramification of a curve C is a point 
p such that there exist three subsets of C, all continua, of 
which any pair intersect only at p. 

Sierpifiski's own diagram of the construction of this 
curve is shown in Figure 2(a). He first establishes that 
it is a Cantor curve (a continuum that is not  dense in 
the plane). By a careful s tudy of the process by which 
the various triangles and subtriangles are constructed, 
he then proves that every point other than the three ver- 
tices of the original triangle is a point of ramification. These 
three vertices are clearly not points of ramification, but 

(a) 

Figure 2. Sierpifiski's version. 
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before dealing with them, Sierpifiski offers Figure 2(b) as 
a sketch proof that his set is also a Jordan curve. Finally, 
he observes that if six copies of his triangle are arranged 
to form a regular hexagon, then the result is a Cantor and 
Jordan curve for which every point is a point of ramifica- 
tion. 

Sierpifiski's curve is of course a fractal, though that 
word was not coined until 1975 by Mandelbrot [1], who 
also, in jest, introduced the term Sierp#fski gasket. At 
about the same time, Sierpifiski invented several other 
celebrated fractals, including his space-filling curve [7] 
and the Sierpifiski carpet [8]. He also invented several 
functions with fractal properties: a function [9] that has 
zero derivative almost everywhere, yet climbs mono- 
tonically from 0 to 1 (a forerunner of the "devil 's stair- 
case" [1]), and a function f such that f ( f ( x ) )  = x whose 
graph is dense in the plane [10]. (You might like to try 
to construct such a function; see below for Sierpifiski's 
solution, a typical example of his ingenuity.) Because 
the gasket is assembled from three copies, each half the 
size, its fractal (or Hausdorff-Besicovitch) dimension is 
log 3 / log  2 = 1.5849 . . . .  See Ref. 11 for details. It has 
a three-dimensional relative, to which Mandelbrot [1] 
gives the less inspired name "a fractal skewed web" (Fig. 
3), but which I prefer to call the Sierpi~ski cheese. Cu- 
riously, this has fractal dimension log 4 / log  2 = 2, the 
same as that of an ordinary Euclidean plane. Observe 
that the section cut away at each stage is not an inverted 
tetrahedron, which is why  tetrahedra - -  contrary to Aris- 
t o t l e -  do not tile space. 

Solution To get a function f such that f ( f ( x ) )  = x with 
a dense graph, define f (a  + bye)  = b + a v ~  for rational 
a and b; otherwise define f ( x )  = x. 

Sierpifiski invented a fractal 60 years before the 
word existed. Mandelbrot - -  with some just if icat ion--  
suggests that Eiffel invented the moral equivalent of the 
Sierpifiski gasket 26 years before Sierpifiski did. A year 
later, in 1890, another Frenchman characterised a combi- 
natorial incarnation of the Sierpifiski gasket: 

Encounter 2: Pascal's Encounter with 
Sierpifiski's Gasket (Edouard Lucas, 1890) 

I have yet to see a problem, however complicated, which 
when you looked at it in the right way, did not become still 
more complicated. 

Poul Anderson 

As the section title shows, attributions for this en- 
counter are tricky: The material goes back so far into the 
collective mathematical consciousness that it is difficult 
to award credit to any specific person. Instead, we record 



Figure 3. The Sierpifiski cheese. 

some milestones. Pascal gets credit for the encounter be- 
cause it is his name that is attached to the triangular array 
of binomial coefficients (~). Like most attributions from 
the distant past (and many from the near present), it is 
utterly wrong- -  for example, the triangle appears on the 
title page of an early 16th-century arithmetic by Petrus 
Apianus; it can be found in a Chinese mathematics book 
of 1303; and, indeed, it has been traced back at least to 
Omar Khayy~m around 1100, who almost certainly got 
it from earlier Arabic or Chinese sources. Michael Stifel 
introduced the term binomial coefficient around 1500. The 
explicit formula n ! / r ! ( n  - r)! was given by Isaac Newton 
and permitted the nonrecursive computation of binomial 
coefficients. In its interpretation as the number of ways 
to choose r items from a set of n, this expression (though 
not in that notation) was known to Bhaskara (b. 1114). 

What is the parity of (~)? That is, what is its value 
(mod 2)? It is easy to experiment with a computer because 
it suffices to implement the rule of formation of the trian- 
gle mod 2. The result, Figure 4, is striking and surprising. Figure 4. Pascal mod 2. 
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The odd binomial coefficients form a discrete variant of 
the Sierpifiski gasket. Indeed,  by  suitably rescaling seg- 
ments  of the figure and taking an appropriate  limit, we 
ma y  consider the pari ty-coloured Pascal triangle to be a 
second manifestation of the gasket. 

The ultimate explanat ion for this pattern is a theorem 
attr ibuted by  Dickson [12] to Edouard Lucas in 1890: 

It follows that almost all binomial coefficients are even. 
Singmaster [18] takes this observat ion further, proving 
that for any  m, almost all binomial  coefficients are divis- 
ible by m. 

A ref inement  of Lucas's theorem was proved by  
Glaisher [19]. Similar results were  known to Kummer  
[20]. 

THEOREM 1: Let p be a prime. Write n and r in p-ary no- 
tation: n = nk . . . no, r = rk " "to, where the n d and rj are 
0, 1 , . . . , p -  1. Then 

T HE ORE M  2: Let p be prime. The largest power of p that 
divides (~) is equal to the number of carries in the (mod p) 
addition of r and n - r. 

(n)_ h (rn~) (modp).  
j=0 

A proof  is given in Ref. 21. Related articles include 
Refs. 22-26. 

We make the s tandard convention that if r does not lie 
in the range 0 <_ r < n, then the value of (~) is 0. (An 
attractive convention which differs from this if n or r is 
negative may  be found  in Ref. 13".) Taking p = 2 and 
observing that 

( ~ ) =  ( 1 0 ) =  ( 1 1 ) = 1  , ( ~ ) = 0 ,  

it follows that (~) is even if and only if some binary digit 
of n is 0 while the corresponding digit of r is 1. Similar 
statements can be made  for any pr ime p. 

Lucas's theorem explains the recursive Sierpklski pat- 
tern of Figure 4. It implies that when  n and v are expressed 
in binary as above, the parities of 

(n) 
/ 'k  " " r o  

( 2 k + : + n ) = l l n k ' " n o )  

\ Ork ro ' 

2 k + l + n )  = ~ l n k ' " n o )  

2 k + l +  \ l r k  . . to  

are the same, whereas 

n = 
(2k+1 + r )  I Oak ' ' "  

is always even. 
The patterns for (~) (mod k), some of which are shown 

in Figure 5, are at least as pret ty as that for k = 2. They 
have been discussed in this journal by Sved [141; see also 
Refs. 15 and 16. 

When k = p~ is a p r ime  power, there is a generaliza- 
tion of Lucas's theorem, due  to Kazandzidis  [171, which 
explains the patterns in the same manner  as Lucas 's  the- 
orem does and relates them to the base k expansions of 
n and r. For other values of k, it seems to be necessary 
to write k as a product  of pr ime powers  kj and consider 
expansions to all bases k~. 

As the gasket is a fractal of dimension less than 2, 
its area ( two-dimensional  Hausdorff  measure) is zero. 

Encounter 3: Hinz's Encounter with 
Sierpifiski's Gasket (Andreas Hinz, 1990) 

In the great temple at Benares, beneath the dome which 
marks the centre of the world, rests a brass plate in which 
are fixed three diamond needles, each a cubit high and as 
thick as the body of a bee. On one of these needles, at the cre- 
ation, God placed sixty-four discs of pure gold, the largest 
disc resting on the brass plate, and the others getting smaller 
and smaller up to the top one. This is the Tower of Bramah. 
Day and night unceasingly the priests transfer the discs from 
one diamond needle to another according to the fixed and 
immutable laws of Bramah, which require that the priest on 
duty must not move more than one disc at a time and that 
he must place this disc on a needle so that there is no smaller 
disc below it. When the sixty-four discs shall have been thus 
transferred from the needle on which at the creation God 
placed them to one of the other needles, tower, temple, and 
Brahmins alike will crumble into dust, and with a thunder- 
clap the world will vanish. 

M. de Parville 
La Nature, 1884 

Edouard  Lucas also seems to have been h a u n t e d - -  
albeit u n w i t t i n g l y - - b y  Sierpifiski's gasket. In 1883, he 
marketed the puzzle known as the Tower of Hanoi, under  
the p s e u d o n y m  N. Claus [27]. It is similar to de Parville's 
romantic Tower of Brahma but uses eight (or fewer) discs 
made  of more  mundane  materials; moreover,  instead of 
needles, it employs  pins. It is an old friend of recreational 
mathematicians and computer  scientists. 

Nu mb er  the pins 1, 2, and 3: Assume all discs start on 
pin I and must  end on pin 2. It is well  known that the so- 
lution has a recursive structure, explained, for example, 
in Ref. 28. I call it the army method. This particular a rmy 
has a large number  of privates, wh o  have been trained 
to solve 1-disc Hanoi  but  nothing more  ambitious: 

"Move the disc to pin 2 while keeping it in order  of 
s i z e - - y e s  Bloggs, I know you  can't  change the order  
of one disc, but  I wouldn ' t  be surprised if you  'orrible 
lot found  a way to screw even that up." 
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Figure 5. Pascal mod k. 
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The corporals can solve 2-disc Hanoi: 

"Private Bloggs: Move the smaller disc to pin 3 as in 
1-disc Hanoi. Private Aggs: move the larger disc to 
pin 2. Private Bloggs: Move the smaller disc to pin 2 
as in 1-disc Hanoi." 

The sergeants can solve 3-disc Hanoi: 

�9 "Corporal Cloggs: Move the top two discs to pin 3 as 
in 2-disc Hanoi. Private Aggs: Move the larger disc 
to pin 2. Corporal Cloggs: Move the top two discs to 
pin 2 as in 2-disc Hanoi." 

The lieutenants can solve four-disc Hanoi: 

�9 "Sergeant Doggs: Move the top three discs to pin 3 as 
in 3-disc Hanoi. Private Aggs: Move the larger disc 
to pin 2. Sergeant Doggs: Move the top three discs to 
pin 2 as in 3-disc Hanoi." 

Private Aggs, of course, is a specialist. You should be able 
to write down how Captain Eggs, Major Foggs, Colonel 
Goggs, and n-star Generals Hoggs, and so forth, solve 
their own levels of the puzzle. To solve n-disc Hanoi for 
n > 8 takes an (n - 7)-star General. I once tried to con- 
vince Yorkshire Television to enact this method for 5-disc 
Hanoi, using real soldiers. Unfortunately, they decided 
it would put undue strain on the audience's attention 
span. 

That solves the puzzle: What else is there to say? Rather 
a lot, actually. You can pose many more subtle prob- 
l e m s -  such as how to move from any given position to 
any other in the most efficient manner - -none  of which 
are within the capabilities of my monstrous regiment. 

Sometimes it helps to think geometrically. With any 
puzzle of this general type (moving objects, finite num- 
ber of positions) we can associate a graph. Its nodes are 
the positions, its edges the moves between them. The 
graph Hn for n-disc Hanoi was introduced by Scorer et 
al. [29], rediscovered by Er [30], re-rediscovered by Lu 
[31], and (re)Bdiscovered by me [15]. It is in the nature of 
the topic that most people working on it don't know the 
literature, so (re)ndiscovery for all n > 4 will occur with 
probability I in the long run. 

What does Hn look like? For definiteness, consider H3, 
which describes the positions and moves in three-disc 
Hanoi. To represent a position, number the three discs as 
1, 2, and 3, with 1 being the smallest and 3 the largest. 
Number the pins 1, 2, and 3 from left to right. Suppose, 
for example, that disc 1 is on pin 2, disc 2 on pin 1, and 
disc 3 on pin 2. Then we have completely determined 
the position, because the rules imply that disc 3 must be 
underneath disc 1. Thus, we can encode this information 
in the sequence 212, the three digits, in turn, representing 
the pins for discs 1, 2, and 3. Therefore, each position in 
3-disc Hanoi corresponds to a sequence of three digits, 
each being 1, 2, or 3. There are 33 = 27 positions (because 
each disc can be on any pin, independently of the others). 

What are the permitted moves? The smallest disc on a 
given pin must be at the top, so it corresponds to the first 
appearance of the number of that pin in the sequence. If 
we move that disc, we must move it to the top of the pile 
on some other pin, that is, we must change the number 
so that it becomes the first appearance of some other 
number. For example, in position 212, suppose we wish 
to move disc 1. This is on pin 2 and corresponds to the 
first occurrence of 2 in the sequence. Suppose we change 
this first 2 to 1. Then this is (trivially!) the first occurrence 

212 

112 312 232 

Figure 6. Moves in 3-disc Hanoi from position 212. 
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of the digit 1; so the move from 212 to 112 is legal; so is 
212 to 312 because the first occurrence of 3 is in the first 
place in the sequence. We may also move disc 2, because 
the first occurrence of the symbol I is in the second place 
in the sequence. But we ~annot change it to 2, because 
2 already appears earlier, in the first place. A change to 
3 is, however, legal. So we may change 212 to 232 (but 
not to 222). Finally, disc 3 cannot be moved, because the 
third digit in the sequence is a 2, and this is not the first 
occurrence of that digit. 

To sumup: From position 212 we can make legal moves 
to 112, 312, and 232, and only these (Fig. 6). Proceeding in 
this way, we list all 27 positions and all possible moves 
by following the above rules. The graph /-/3 can then 
be constructed: The result (after some rearrangement for 
elegance) is Figure 7. 

Something that pretty can't be coincidence! //3 con- 
sists of three copies of a smaller graph, linked by three 
single edges to form a triangle. But each smaller graph, 
in turn, has a similar triple structure. Why does every- 
thing appear in threes, and why are the pieces linked in 
this manner? 

In fact, the graph/-/2 looks exactly like the top third 
of Figure 7. Even the labels on the vertices are the same, 
except that the final I is deleted. It is, of course, easy to see 
this without working out the graph again. You can play 
2-disc Hanoi with three discs: just ignore disc 3. Suppose 
disc 3 stays on pin 1. Then we are playing 3-disc Hanoi 
but  restricting attention to those three-digit sequences 
that end in 1, such as 131 or 221. These are precisely 
the sequences in the top third of the figure. Similarly, 3- 
disc Hanoi with disc 3 fixed on pin 2 corresponds to the 
lower left third, and 3-disc Hanoi with disc 3 fixed on pin 
3 corresponds to the lower right third. It works for the 
same reason that the army method does. 

This explains why we see three copies of the 2-disc 
Hanoi graph in the 3-disc graph. A little further thought 
shows that these three subgraphs are joined by just three 
single edges in the full puzzle. For, in order to join up 
the subgraphs, we must move disc 3. When can we do 
this? Only when one pin is empty, one contains disc 3, 
and the other contains all the rest! Then we can move 
disc 3 to the empty pin, creating an empty pin where it 
came from and leaving the other discs untouched. There 
are six such positions, and the possible moves join them 
in pairs. 

The same argument works for any number of discs, 
so Hn+l consists of three copies of Hn linked at the cor- 
ners. For example, Figure 8 shows/-/5. As the number of 
discs becomes larger and larger, the graph looks more 
and more like the Sierpifiski gasket. 

You can use the graph to answer all sorts of questions 
about the puzzle. For example, it follows inductively 
that the graph is connected, so you can always move 
from any position to any other. The minimum path from 
the usual starting position to the usual finishing position 
runs straight along one edge of the graph, so (again by 

J 

Figure 7. The graph H s of 3-disc Hanoi. 

G 

G G ........ 
G G G G  

Figure 8. The graph H 5 of 5-disc Hanoi. 

induction) has length 2 n - 1. This result, long assumed 
in the form "the largest disc moves only once," was first 
proved by Wood [32]. 

The resemblance of H,~ to the Sierpifiski gasket has a 
curious application. Not long after Ref. 15 appeared, I 
attended the International Congress of Mathematicians 
in Kyoto, and a German mathematician named Andreas 
Hinz introduced himself. He had been trying to calculate 
the average distance between two points in a Sierpifiski 
gasket of unit side, encountered difficulties, and asked 
two experts. Here's what they said. 
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The Considered View of Expert 1: 
It's very difficult. 

The Considered View of Expert 2: 
It's trivial, and the answer is 8/15. 

Here is Expert 2's proof. The idea is first to find the 
average distance a to some particular corner, and then 
to use that to find the average distance d between two 
arbitrary points. 

From Figure 9, it follows immediately that 

112  / 2  ~)] a = ~  + 2  + , 

from which a = 2. Now consider two points: They are 
either in the same subtriangle, as in Figure 10(a), or not, 
as in Figure 10(b). The respective probabilities are �89 and 
2. In the latter case, the shortest path between them goes 
through the common vertex. Therefore, 

2(2) d = ~ + ~  2 , 

from which d = 8/15. 
Happy? You shouldn't be. Expert 2's proof is falla- 

cious. In the second case, the shortest path sometimes 
goes through two connecting vertices. An example in H3, 
pointed out by Lu [31], is shown in Figure 11. The iden- 
tical mis take--  assuming that "the largest disc moves at 

Figure 9. Proof that (x = 2 Figure 11. Lu's counterexample. 

Figure 10. Proof (?) that d = 8/15. 
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most once" when moving between any two positions by 
the most efficient rou te - -  occurs many times in the liter- 
ature on the Tower of Hanoi. See, for example, Refs. 30 
and 33. Psychologists have used the tower of Hanoi as 
an experimental testbed for-human decision-making, for 
example, Ref. 34; and on occasion the same mistake has 
crept i n - -  for example, in Ref. 35. 

Unfortunately, even when the nature of the fallacy is 
grasped, it seems hard to incorporate this third case into 
the analysis in the same manner as Figures 9 and 10, and 
the story becomes far more complicated. Hinz [36, 37], 
and independently Chan [38], give a formula for the av- 
erage number of moves between positions in the Tower 
of Hanoi. In fact, the total number of moves (using short- 
est paths) between all possible pairs of positions is 

46618 n 1 n 3 n 
88---5 - 59 - 73 

+ 4 ~ -  100318 v / ~ ) [ ~ ( 5 _ V , ~ ) ]  n 

Thus, the average distance between two positions is 
asymptotic to (466/885)2 n. 

Hinz hadn't realised there was any connection with the 
Sierpifiski gasket; but having seen Ref. 15, he realised that 
the limit as n --* ~ of his result for n-disc Hanoi proves 
that the average distance between two points in a unit 
,Sierpifiski gasket is 466/885 precisely (just normalize to 
make the diameter of the graph I, by dividing by 2 n - 1). 
This is some 2% smaller than the value suggested by Ex- 
pert 2. Who says recreational mathematics has no serious 
payoff? At the moment, this approach via the tower of 
Hanoi is the only known method for finding the answer. 

For the statistically minded, Hinz also proved that the 
variance of the distance between two random points is 
precisely 904808318/14448151575. 

E n c o u n t e r  4: Barns ley 's  E n c o u n t e r  w i t h  
S ierp i f i sk i ' s  G a s k e t  ( M i c h a e l  Barnsley,  1988) 

A fractal set generally contains infinitely many points whose 
organization is so complicated that it is not possible to de- 
scribe the set by specifying directly where each point lies. 
Instead the set may be defined by "the relations between 
the pieces". It is rather like describing the solar system by 
quoting the law of gravitation and stating the initial condi- 
tions. Everything follows from that. It appears always better 
to describe in terms of relationships. 

Michael Barnsley 
Fractals Everywhere 

In his celebrated textbook [39], Michael Barnsley intro- 
duces the chaos game. Mark three points in the plane, say 
at the vertices of an equilateral triangle. Obtain a three- 
sided coin for which heads, tails, and edge have the same 

Figure 12. The chaos game after 1000, 3000, and 6000 iterations. 

probability, namely �89 Label the three vertices of the tri- 
angle correspondingly. Now play the following game. 
Start with a randomly chosen point x0 in the plane. Toss 
the coin and move the point halfway towards the cor- 
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responding vertex, getting a new point x~. Repeat this 
procedure, always generating Xn+l from Xn by tossing 
the coin and moving xn halfway towards the appropri- 
ate vertex. What do you  see? 

You might expect the result to be some uniform cloud 
of points in the plane. But having read the title of this ar- 
ticle, you might suspect that this is not so, and a shrewd 
guess would be . . .  well, Figure 12 shows that  you're 
right. You get a Sierpifiski gasket, which becomes more 
and  more sharply defined the more iterates you  use. (The 
first 50 iterates are omitted, for these constitute dynami- 
cal "transients" that spoil the perfection of the figure.) 

This seems a very odd  shape to generate by a ran- 
dom procedure, a l though we shall see shortly that it is 
entirely natural. Barnsley defines a generalization: an it- 
erated function system or IFS. This is a finite set of affine 
maps from the plane to itself. Affine maps are specified 
by six parameters: 

F(x,  y) = (ax + by + e, cx + dy + f) .  

The contractivityfactor of such a map is defined to be 

s = lad - bc[. 

If s < 1, then F shrinks areas by a factor s. (If s > 1, it 
expands them by a factor s.) Suppose that .F = {F~} is 

an IFS, where Fn has contractivity factor sn, and suppose 
that Sn < 1 for all n. Define a set A to be invariant under  
~v if 

n 

a = U F~(A). 
i = 1  

For example, suppose maps F~ : • --~ R, (i = 1, 2) are 
defined by 

X 

F~(z)  = 5 '  

x + 2  
F2(x) = 3 

Then the standard middle-third Cantor set is invariant 
under  Y'. 

THEOREM 3: Under the above conditions (in particular 
with all si < 1), there exists a unique nonempty invariant 
set for .F. 

Proof:. Let 7-/be the set of all subsets of ~2 with the Haus- 
dorff metric. Then ~- defines a contraction mapping on 
with contractivity factor s = max(sn). This has a unique 
fixed point. See Ref. 11 or 39 for details. 

In view of the proof, we denote the invariant set by 
Fix(Y). Typically, Fix(~-) is a fractal; and by definition, 
it is self-affine, that is, the union of affine copies of itself. 

Figure 13. The black spleenwort fern. 
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With certain technical hypotheses (the images of Fix(S-) 
under  the fi should not overlap "too much"), the fractal 
dimension d of FixO v) is the unique value such that 

s~ + . - .  + s~ = 1. 

The Sierpifiski gasket is obviously equal to Fix(Y) 
when  ~ = {F1, F2, F3} a n d  

El(X, y ) =  ( 2  2)  

F2(x ,y)  = ( x q - 1  ~ )  
2 ~ 

(21  F3(x, Y) = q- -~, 2 -]- . 

These three transformations correspond precisely to 
"move  halfway towards the vertices of an equilateral 
triangle." It is now clear that the point set defined by 
playing the chaos game is almost surely a very close ap- 
proximation to the invariant set for the corresponding 
IFS, and that's why  we see the Sierpinski gasket. Barnsley 
[39] and Falconer [11] contain the proof, plus extensive 
generalizations. 

This observation has a curious and potentially impor- 
tant consequence. Suppose you  want  to send a colleague 
a picture of the Sierpifiski gasket. You could draw one 
and run it through a fax machine. This will scan the page 
in raster fashion and send several hundred thousand 
numbers  along the telephone lines, from which another 
,fax machine can reconstruct the picture. On the other 
hand,  if the recipient has a computer that can play the 
chaos game, all you need do is send the numbers  that 
define the iterated function s y s t e m - -  six per affine map, 
18 altogether. This represents a considerable saving in 
data to be transmitted. 

As it happens, a great many  natural objects have frac- 
tal structure, and so can be given a "compressed" de- 
scription as invariant sets of iterated function systems. 
So can many nonfractals, such as a solid square (play the 
chaos game with four points and a four-sided coin). The 
traditional example is the black spleenwort fern (Figure 
13). Although you might  not often want  to transmit a 
black spleenwort fern, most  pictures are made up out of 
pieces that have the same kind of fractal structure, and 
an extension of the notion of an IFS can be applied to 
them: see Refs. 40--43 and 48. Initially the method was 
greeted with some skepticism, but it is a perfectly practi- 
cal one: see Refs. 44 and 48. Commercial software to im- 
plement the process is ava i lab le - -a t  commercial prices. 
The whole story suggests a new view of complex i ty - -  
or at least, encourages a view more akin to algorithmic 
information theory [45] - -  namely, it is the complexity of 
the process that produces an object that is important,  not 
the apparent complexity of the object itself. Prescription, 
not description, is th,e key. It is a point of view with sub- 
stantial implications for evolutionary and developmen- 
tal biology; see Ref. 46. 

Encounters, Encounters,... 

The variety of situations in which we encounter the 
Sierpifiski gasket is considerable. Indeed, there are many  
more such encounters scattered throughout  the mathe- 
matical literature: One I was told of recently is the graph 
of positions for hexaflexagons. These ingenious mathe- 
matical toys are described in Ref. 47. 

Why do we meet the gasket in so many  different 
places? The under lying theme in all four encounters is 
recursion: The Sierpifiski gasket is the incarnation of re- 
cursive geometry. Indeed, it is probably the simplest gen- 
uinely two-dimensional recursive geometric object, just 
as the Cantor set is the simplest one-dimensional one. (I 
mean that the gasket lives in the p l a n e - - I ' m  not talking 
about its fractal dimension.) 

Even given this rationalisation, it is still rather odd that 
it appears in so many  guises. 
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Williams, continued from p. 34. 

Whether  Daniel  G u m b  proved  the theorem for himself  
or was  s imp ly  so impressed by  the simplici ty of the proof  
that he dec ided  to record it in s tone is not clear. It is still 
easily recognisable despite 250 years  of weathering.  This 
proof  is, of course, fairly well known.  For example,  it is 
ment ioned  in Ref. 3 as "another  proof ."  

The cave is not very  easy to find. Figure 2 shows it 
in relation to the Cheesewring (and the author) wi th  the 
d iag ram easily recognisable on the roof. To those visit- 
ing this par t  of Cornwall ,  and possibly  considering the 
as t ronomical  significance of the Hurlers ,  the location of 
Daniel G u m b ' s  cave and  proof  is left as an exercise. 
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