Four Encounters with Sierpiniski’s Gasket!

Mathematicians would not be happy merely with simple,
lusty configurations. Beyond these their curiosity extends
to psychopathic patients, each of whom has an individual
case history resembling no other; these are the pathological
curves of mathematics.

Edward Kasner and James Newman
Mathematics and the Imagination

One of the most fascinating features of mathematics is the
way in which the same idea crops up again and again
in apparently unrelated areas. Over the last few years,
I have been haunted by the object that Benoit Mandel-
brot [1] has christened Sierpiriski’s gasket. It is the trian-
gular fractal shown in Figure 1. Nowadays, fractals are
respectable, and the sentiments expressed in the above
quotation seem old-fashioned: it shows how much atti-
tudes have changed. Most people’s, anyway. Sierpiriski’s
gasket arises naturally in many branches of mathematics,
and my aim is to convince you that without it, mathemat-
ics would be the poorer. But first, a few words about the
man himself.

Explorer of the Infinite

Waclaw Sierpiniski was born in Warsaw, Poland, on 14
March 1882. His father Konstanty Sierpiriski was a doc-
tor. My source, Kasimierz Kuratowski [2], Vol. 1, fails
to record any details about his mother. Sierpiniski stud-
ied under the number theorist G. Voronoi, and his early
work was also in number theory, a topic to which he re-
peatedly returned in later life. He obtained a doctorate in
1906, and by 1909 he had moved to the University Jean
Casimir in Lvov, becoming a professor there in 1910. The
year 1909 is more significant, however, because in that

! This article is an expanded and somewhat rewritten version of the
Lonseth Lecture given at Oregon State University, Corvallis on 14 May
1991, and the London Mathematical Society Popular Lecture given at
Sheffield University on 17 June 1991 and Imperial College London on
28 June 1991.

Ian Stewart

year Sierpiniski gave the first systematic lecture course
ever taught on set theory. He published a book based
on it in 1912, which was among the first texts on that
subject. Sierpiniski had found his subject, and the bulk of
his subsequent research was in set theory and point set

topology.
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Figure 1. The Sierpiniski gasket.

During the First World War, Sierpifiski was interned
in Russia, first at Viatka and then in Moscow. There he
worked with the Russian mathematician N. Lusin on
projective sets and real functions. Their first joint pa-
per appeared in 1917 and the last in 1929. At the end
of the war, Sierpinski returned to Lvov, but almost im-
mediately became a professor at the now reestablished
University of Warsaw. The place was a hotbed of Polish
mathematics, specialising in set theory and foundational
matters, with people such as Zygmunt Janiszewski, Ste-
fan Mazurkiewicz, and Jan Lukasiewicz. Together with
Sierpinski, the first two started their own journal, Funda-
menta Mathematicae, which exists to this day. Lvov, too,
became a major centre of Polish mathematics under Ste-
fan Banach —see Ciesielski [3, 4] for the atmosphere of
this period, including the story of the famous “Scottish
Café” in Lvow.

Between the wars, Sierpiiiski’s talents flourished. He
was always prolific: his collected works include 720 pa-
pers published between 1906 and 1968, 106 expository
articles, 50 books (plus 7 at the level of secondary edu-
cation), and 12 mimeographed sets of lecture notes. The
start of World War H found him still in Warsaw, where he
continued his scientific work as best he could, teaching

clandestine courses at the university to small audiences.
After the uprising of 1944, he was deported by the Ger-
mans to the region around Krakéw. In 1945, he briefly
lectured at the Jagiellonian University of Krakéw, be-
fore returning once more to Warsaw. In 1958, he wrote
a major monograph, Cardinal and Ordinal Numbers. He
remained very active in administrative matters and re-
ceived a number of important prizes and other honours
from the Polish government. He died in Warsaw on 21
October 1969. Following Sierpifiski’s wishes, his grave
bears just two words (in Polish): Explorer of the Infinite.

Encounter 1: Sierpinski’s Encounter with
Sierpiniski’s Gasket (Wactaw Sierpiriski, 1915)

My claim is that (well before Koch, Peano, and Sierpiniski) the
tower of Gustav Eiffel built in Paris deliberately incorporates
the idea of a fractal curve full of branch points.

Benoit Mandelbrot
The Fractal Geometry of Nature

The gasket made its first appearance in an article only
three and a half pages long [5]. (Though, being pub-
lished in Comptes Rendus, it couldn’t have been very
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much longer without infringing the rule brought in—it
is said — to prevent Augustin-Louis Cauchy from filling
every issue with vast screeds.) A more detailed treatment
followed a year later [6]; see also Ref. 2. The gasket’s role
was to provide an example of “a curve simultaneously
Cantorian and Jordanian, of which every point is a point
of ramification”; less formally, a curve that crosses itself
atevery point. A point of ramification of a curve C'is a point
p such that there exist three subsets of C, all continua, of
which any pair intersect only at p.

Sierpiniski’s own diagram of the construction of this
curve is shown in Figure 2(a). He first establishes that
it is a Cantor curve (a continuum that is not dense in
the plane). By a careful study of the process by which
the various triangles and subtriangles are constructed,
he then proves that every point other than the three ver-
tices of the original triangle is a point of ramification. These
three vertices are clearly not points of ramification, but

Figure 2. Sierpiniski’s version.
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before dealing with them, Sierpinski offers Figure 2(b) as
a sketch proof that his set is also a Jordan curve. Finally,
he observes that if six copies of his triangle are arranged
to form a regular hexagon, then the result is a Cantor and
Jordan curve for which every point is a point of ramifica-
tion.

Sierpifiski’s curve is of course a fractal, though that
word was not coined until 1975 by Mandelbrot [1], who
also, in jest, introduced the term Sierpiriski gasket. At
about the same time, Sierpiniski invented several other
celebrated fractals, including his space-filling curve [7]
and the Sierpiniski carpet [8]. He also invented several
functions with fractal properties: a function [9] that has
zero derivative almost everywhere, yet climbs mono-
tonically from 0 to 1 (a forerunner of the “devil’s stair-
case” [1]), and a function f such that f(f(z)) = x whose
graph is dense in the plane [10]. (You might like to try
to construct such a function; see below for Sierpinski’s
solution, a typical example of his ingenuity.) Because
the gasket is assembled from three copies, each half the
size, its fractal (or Hausdorff-Besicovitch) dimension is
log 3/log 2 = 1.5849.... See Ref. 11 for details. It has
a three-dimensional relative, to which Mandelbrot [1]
gives the less inspired name “a fractal skewed web” (Fig.
3), but which I prefer to call the Sierpitiski cheese. Cu-
riously, this has fractal dimension log 4/log 2 = 2, the
same as that of an ordinary Euclidean plane. Observe
that the section cut away at each stage is not an inverted
tetrahedron, which is why tetrahedra — contrary to Aris-
totle—do not tile space.

Solution Togeta function f such that f(f(z)) = z with
a dense graph, define f(a + bv/2) = b+ av/2 for rational
a and b; otherwise define f(zr) = z.

Sierpifiski invented a fractal 60 years before the
word existed. Mandelbrot — with some justification —
suggests that Eiffel invented the moral equivalent of the
Sierpinski gasket 26 years before Sierpifiski did. A year
later, in 1890, another Frenchman characterised a combi-
natorial incarnation of the Sierpiriski gasket:

Encounter 2: Pascal’s Encounter with
Sierpinski’s Gasket (Edouard Lucas, 1890)

I have yet to see a problem, however complicated, which
when you looked at it in the right way, did not become still
more complicated.

Poul Anderson

As the section title shows, attributions for this en-
counter are tricky: The material goes back so far into the
collective mathematical consciousness that it is difficult
to award credit to any specific person. Instead, we record
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Figure 3. The Sierpinski cheese.

some milestones. Pascal gets credit for the encounter be-
cause itis his name that is attached to the triangular array
of binomial coefficients (7). Like most attributions from
the distant past (and many from the near present), it is
utterly wrong — for example, the triangle appears on the
title page of an early 16th-century arithmetic by Petrus
Apianus; it can be found in a Chinese mathematics book
of 1303; and, indeed, it has been traced back at least to
Omar Khayyam around 1100, who almost certainly got
it from earlier Arabic or Chinese sources. Michael Stifel
introduced the term binomial coefficient around 1500. The
explicit formula n!/r!(n —r)! was given by Isaac Newton
and permitted the nonrecursive computation of binomial
coefficients. In its interpretation as the number of ways
to choose r items from a set of n, this expression (though
not in that notation) was known to Bhaskara (b. 1114).
What is the parity of (7')? That is, what is its value
(mod 2)? Itis easy to experiment with a computer because
it suffices to implement the rule of formation of the trian-
gle mod 2. The result, Figure 4, is striking and surprising,.

Figure 4. Pascal mod 2.
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The odd binomial coefficients form a discrete variant of
the Sierpiniski gasket. Indeed, by suitably rescaling seg-
ments of the figure and taking an appropriate limit, we
may consider the parity-coloured Pascal triangle to be a
second manifestation of the gasket.

The ultimate explanation for this pattern is a theorem
attributed by Dickson [12] to Edouard Lucas in 1890:

THEOREM 1: Let p be a prime. Write n and r in p-ary no-
tation: n = ny - --ng, ¥ = Tk - T, Where the n; and r; are
0,1,...,p— 1. Then

()-11(3)

We make the standard convention that if » does not lie
in the range 0 < r < n, then the value of (7) is 0. (An
attractive convention which differs from this if n or r is
negative may be found in Ref. 13.) Taking p = 2 and
observing that

0-0)-()-1 (-0

it follows that (7) is even if and only if some binary digit
of n is 0 while the corresponding digit of r is 1. Similar
statements can be made for any prime p.

Lucas’s theorem explains the recursive Sierpiniski pat-
tern of Figure 4. [timplies that whenn and r are expressed
in binary as above, the parities of

n . A )

r)] \rg--m)’
26140\ (Ing--mp

r - Org 10 ’

2k+1+n _ lnk---no
2k+1 4 ) N\ 1o omp

are the same, whereas

n _ (Ong---ng
(2k+1 +r) B (1"'k . -'To)
is always even.

The patterns for (7) (mod k), some of which are shown
in Figure 5, are at least as pretty as that for k£ = 2. They
have been discussed in this journal by Sved [14]; see also
Refs. 15 and 16.

When k£ = p® is a prime power, there is a generaliza-
tion of Lucas’s theorem, due to Kazandzidis [17], which
explains the patterns in the same manner as Lucas'’s the-
orem does and relates them to the base k expansions of
n and r. For other values of k, it seems to be necessary
to write k as a product of prime powers k; and consider
expansions to all bases k;.

As the gasket is a fractal of dimension less than 2,
its area (two-dimensional Hausdorff measure) is zero.
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It follows that almost all binomial coefficients are even.
Singmaster [18] takes this observation further, proving
that for any m, almost all binomial coefficients are divis-
ible by m.

A refinement of Lucas’s theorem was proved by
Glaisher [19]. Similar results were known to Kummer
[20].

THEOREM 2: Let p be prime. The largest power of p that
divides () is equal to the number of carries in the (mod p)
addition of r and n — r.

A proof is given in Ref. 21. Related articles include
Refs. 22-26.

Encounter 3: Hinz’s Encounter with
Sierpinski’s Gasket (Andreas Hinz, 1990)

In the great temple at Benares, beneath the dome which
marks the centre of the world, rests a brass plate in which
are fixed three diamond needles, each a cubit high and as
thick as the body of a bee. On one of these needles, at the cre-
ation, God placed sixty-four discs of pure gold, the largest
disc resting on the brass plate, and the others getting smaller
and smaller up to the top one. This is the Tower of Bramah.
Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and
immutable laws of Bramah, which require that the priest on
duty must not move more than one disc at a time and that
he must place this disc on a needle so that there is no smaller
disc below it. When the sixty-four discs shall have been thus
transferred from the needle on which at the creation God
placed them to one of the other needles, tower, temple, and
Brahmins alike will crumble into dust, and with a thunder-
clap the world will vanish.

M. de Parville
La Nature, 1884

Edouard Lucas also seems to have been haunted —
albeit unwittingly — by Sierpiriski’s gasket. In 1883, he
marketed the puzzle known as the Tower of Hanoi, under
the pseudonym N. Claus [27]. It is similar to de Parville’s
romantic Tower of Brahma but uses eight (or fewer) discs
made of more mundane materials; moreover, instead of
needles, it employs pins. Itis an old friend of recreational
mathematicians and computer scientists.

Number the pins 1, 2, and 3: Assume all discs start on
pin 1 and must end on pin 2. It is well known that the so-
lution has a recursive structure, explained, for example,
in Ref. 28. I call it the army method. This particular army
has a large number of privates, who have been trained
to solve 1-disc Hanoi but nothing more ambitious:

e “Move the disc to pin 2 while keeping it in order of
size —yes Bloggs, I know you can’t change the order
of one disc, butIwouldn’t be surprised if you "orrible
lot found a way to screw even that up.”



Figure 5. Pascal mod k.
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The corporals can solve 2-disc Hanoi:

e “Private Bloggs: Move the smaller disc to pin 3 as in
1-disc Hanoi. Private Aggs: move the larger disc to
pin 2. Private Bloggs: Move the smaller disc to pin 2
as in 1-disc Hanoi.”

The sergeants can solve 3-disc Hanoi:

¢ “Corporal Cloggs: Move the top two discs to pin 3 as
in 2-disc Hanoi. Private Aggs: Move the larger disc
to pin 2. Corporal Cloggs: Move the top two discs to
pin 2 as in 2-disc Hanoi.”

The lieutenants can solve four-disc Hanoi:

¢ “Sergeant Doggs: Move the top three discs to pin 3 as
in 3-disc Hanoi. Private Aggs: Move the larger disc
to pin 2. Sergeant Doggs: Move the top three discs to
pin 2 as in 3-disc Hanoi.”

Private Aggs, of course, is a specialist. You should be able
to write down how Captain Eggs, Major Foggs, Colonel
Goggs, and n-star Generals Hoggs, and so forth, solve
their own levels of the puzzle. To solve n-disc Hanoi for
n > 8 takes an (n — 7)-star General. I once tried to con-
vince Yorkshire Television to enact this method for 5-disc
Hanoi, using real soldiers. Unfortunately, they decided
it would put undue strain on the audience’s attention
span.

Thatsolves the puzzle: What else is there to say? Rather
a lot, actually. You can pose many more subtle prob-
lems —such as how to move from any given position to
any other in the most efficient manner —none of which
are within the capabilities of my monstrous regiment.

Sometimes it helps to think geometrically. With any
puzzle of this general type (moving objects, finite num-
ber of positions) we can associate a graph. Its nodes are
the positions, its edges the moves between them. The
graph H,, for n-disc Hanoi was introduced by Scorer et
al. [29], rediscovered by Er [30], re-rediscovered by Lu
[31], and (re)discovered by me [15]. It is in the nature of
the topic that most people working on it don’t know the
literature, so (re)"discovery for all n > 4 will occur with
probability 1 in the long run.

What does H,, look like? For definiteness, consider Hs,
which describes the positions and moves in three-disc
Hanoi. To represent a position, number the three discs as
1, 2, and 3, with 1 being the smallest and 3 the largest.
Number the pins 1, 2, and 3 from left to right. Suppose,
for example, that disc 1 is on pin 2, disc 2 on pin 1, and
disc 3 on pin 2. Then we have completely determined
the position, because the rules imply that disc 3 must be
underneath disc 1. Thus, we can encode this information
in the sequence 212, the three digits, in turn, representing
the pins for discs 1, 2, and 3. Therefore, each position in
3-disc Hanoi corresponds to a sequence of three digits,
each being 1, 2, or 3. There are 33 = 27 positions (because
each disc can be on any pin, independently of the others).

What are the permitted moves? The smallest disc on a
given pin must be at the top, so it corresponds to the first
appearance of the number of that pin in the sequence. If
we move that disc, we must move it to the top of the pile
on some other pin, that is, we must change the number
so that it becomes the first appearance of some other
number. For example, in position 212, suppose we wish
to move disc 1. This is on pin 2 and corresponds to the
first occurrence of 2 in the sequence. Suppose we change
this first 2 to 1. Then this is (trivially?) the first occurrence

112

212

312

232

Figure 6. Moves in 3-disc Hanoi from position 212.
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of the digit 1; so the move from 212 to 112 is legal; so is
212 to 312 because the first occurrence of 3 is in the first
place in the sequence. We may also move disc 2, because
the first occurrence of the symbol 1 is in the second place
in the sequence. But we cannot change it to 2, because
2 already appears earlier, in the first place. A change to
3 is, however, legal. So we may change 212 to 232 (but
not to 222). Finally, disc 3 cannot be moved, because the
third digit in the sequence is a 2, and this is not the first
occurrence of that digit.

To sum up: From position 212 we can make legal moves
to 112, 312, and 232, and only these (Fig. 6). Proceeding in
this way, we list all 27 positions and all possible moves
by following the above rules. The graph H3 can then
be constructed: The result (after some rearrangement for
elegance) is Figure 7.

Something that pretty can’t be coincidence! H3 con-
sists of three copies of a smaller graph, linked by three
single edges to form a triangle. But each smaller graph,
in turn, has a similar triple structure. Why does every-
thing appear in threes, and why are the pieces linked in
this manner?

In fact, the graph H, looks exactly like the top third
of Figure 7. Even the labels on the vertices are the same,
except that the final 1is deleted. It is, of course, easy to see
this without working out the graph again. You can play
2-disc Hanoi with three discs: just ignore disc 3. Suppose
disc 3 stays on pin 1. Then we are playing 3-disc Hanoi
but restricting attention to those three-digit sequences
that end in 1, such as 131 or 221. These are precisely
the sequences in the top third of the figure. Similarly, 3-
disc Hanoi with disc 3 fixed on pin 2 corresponds to the
lower left third, and 3-disc Hanoi with disc 3 fixed on pin
3 corresponds to the lower right third. It works for the
same reason that the army method does.

This explains why we see three copies of the 2-disc
Hanoi graph in the 3-disc graph. A little further thought
shows that these three subgraphs are joined by just three
single edges in the full puzzle. For, in order to join up
the subgraphs, we must move disc 3. When can we do
this? Only when one pin is empty, one contains disc 3,
and the other contains all the rest! Then we can move
disc 3 to the empty pin, creating an empty pin where it
came from and leaving the other discs untouched. There
are six such positions, and the possible moves join them
in pairs.

The same argument works for any number of discs,
so H,1 consists of three copies of H,, linked at the cor-
ners. For example, Figure 8 shows Hs. As the number of
discs becomes larger and larger, the graph looks more
and more like the Sierpiniski gasket.

You can use the graph to answer all sorts of questions
about the puzzle. For example, it follows inductively
that the graph is connected, so you can always move
from any position to any other. The minimum path from
the usual starting position to the usual finishing position
runs straight along one edge of the graph, so (again by

Figure 8. The graph H; of 5-disc Hanoi.

induction) has length 2® — 1. This result, long assumed
in the form “the largest disc moves only once,” was first
proved by Wood [32].

The resemblance of H, to the Sierpiniski gasket has a
curious application. Not long after Ref. 15 appeared, I
attended the International Congress of Mathematicians
in Kyoto, and a German mathematician named Andreas
Hinz introduced himself. He had been trying to calculate
the average distance between two points in a Sierpiiski
gasket of unit side, encountered difficulties, and asked
two experts. Here’s what they said.
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The Considered View of Expert 1:
It's very difficult.

The Considered View of Expert 2:
It's trivial, and the answer is 8/15.

Here is Expert 2's proof. The idea is first to find the
average distance a to some particular corner, and then
to use that to find the average distance d between two
arbitrary points.

From Figure 9, it follows immediately that

a—1 242 E+1
32 221

1/2

Figure 9. Proof that « = g

from which a = 2. Now consider two points: They are
either in the same subtriangle, as in Figure 10(a), or not,
as in Figure 10(b). The respective probabilities are } and
£, In the latter case, the shortest path between them goes
through the common vertex. Therefore,

1d 2/.a
i=33+3(2)
from which d = 8/15.

Happy? You shouldn’t be. Expert 2’s proof is falla-
cious. In the second case, the shortest path sometimes
goes through two connecting vertices. An example in H,
pointed out by Lu [31], is shown in Figure 11. The iden-
tical mistake — assuming that “the largest disc moves at

Figure 11. Lu’s counterexample.

PROBABILITY 1/3
()

PROBABILITY 2/3
(b)

Figure 10. Proof (?) that d = 8/15.
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most once” when moving between any two positions by
the most efficient route — occurs many times in the liter-
ature on the Tower of Hanoi. See, for example, Refs. 30
and 33. Psychologists have used the tower of Hanoi as
an experimental testbed forhuman decision-making, for
example, Ref. 34; and on occasion the same mistake has
crept in— for example, in Ref. 35.

Unfortunately, even when the nature of the fallacy is
grasped, it seems hard to incorporate this third case into
the analysis in the same manner as Figures 9 and 10, and
the story becomes far more complicated. Hinz [36, 37],
and independently Chan [38], give a formula for the av-
erage number of moves between positions in the Tower
of Hanoi. In fact, the total number of moves (using short-
est paths) between all possible pairs of positions is

466 1 3

18" — 39"~ 53
12, 18 1 "
+(§+m\/ﬁ) [5 (5+\/1_7)]

(5 007) [ 6-v7)]

Thus, the average distance between two positions is
asymptotic to (466/885)2".

Hinz hadn’t realised there was any connection with the
Sierpiniski gasket; but having seen Ref. 15, he realised that
the limit as n — oo of his result for n-disc Hanoi proves
that the average distance between two points in a unit
Sierpinski gasket is 466/885 precisely (just normalize to
make the diameter of the graph 1, by dividing by 2™ — 1).
This is some 2% smaller than the value suggested by Ex-
pert 2. Who says recreational mathematics has no serious
payoff? At the moment, this approach via the tower of
Hanoi is the only known method for finding the answer.

For the statistically minded, Hinz also proved that the
variance of the distance between two random points is
precisely 904 808 318/14 448 151 575. '

Encounter 4: Barnsley’s Encounter with
Sierpinski’s Gasket (Michael Barnsley, 1988)

A fractal set generally contains infinitely many points whose
‘organization is so complicated that it is not possible to de-
scribe the set by specifying directly where each point lies.
Instead the set may be defined by “the relations between
the pieces”. It is rather like describing the solar system by
quoting the law of gravitation and stating the initial condi-
tions. Everything follows from that. It appears always better
to describe in terms of relationships.

Michael Barnsley
Fractals Everywhere

In his celebrated textbook [39], Michael Barnsley intro-
duces the chaos game. Mark three points in the plane, say
at the vertices of an equilateral triangle. Obtain a three-
sided coin for which heads, tails, and edge have the same

1000 iterates

NEOF PR TONRF
) O N A
J N N G,

Ny 3000 iterates

6000 iterates

Figure 12. The chaos game after 1000, 3000, and 6000 iterations.

probability, namely 1. Label the three vertices of the tri-
angle correspondingly. Now play the following game.
Start with a randomly chosen point zy in the plane. Toss
the coin and move the point halfway towards the cor-
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responding vertex, getting a new point z;. Repeat this
procedure, always generating x,+1 from x,, by tossing
the coin and moving z,, halfway towards the appropri-
ate vertex. What do you see?

You might expect the result to be some uniform cloud
of points in the plane. But having read the title of this ar-
ticle, you might suspect that this is not so, and a shrewd
guess would be ... well, Figure 12 shows that you're
right. You get a Sierpiriski gasket, which becomes more
and more sharply defined the more iterates you use. (The
first 50 iterates are omitted, for these constitute dynami-
cal “transients” that spoil the perfection of the figure.)

This seems a very odd shape to generate by a ran-
dom procedure, although we shall see shortly that it is
entirely natural. Barnsley defines a generalization: an it-
erated function system or IFS. This is a finite set of affine
maps from the plane to itself. Affine maps are specified
by six parameters:

F(z, y) = (ax + by + e, cx + dy + f).
The contractivity factor of such a map is defined to be
s = |ad — be|.

If s < 1, then F shrinks areas by a factor s. (If s > 1, it
expands them by a factor s.) Suppose that 7 = {F,} is

anIFS, where F;, has contractivity factor s,,, and suppose
that s,, < 1 for all n. Define a set A to be invariant under
Fif

For example, suppose maps F; : R — R, (i = 1, 2) are
defined by
F(z) =

¥

+ Wiy

z+2

Fy(z) = 3

Then the standard middle-third Cantor set is invariant
under F.

THEOREM 3: Under the above conditions (in particular
with all s, < 1), there exists a unique nonempty invariant
set for F.

Proof:. Let H be the set of all subsets of R? with the Haus-
dorff metric. Then F defines a contraction mapping on H
with contractivity factor s = max(s,). This has a unique
fixed point. See Ref. 11 or 39 for details.

In view of the proof, we denote the invariant set by
Fix(F). Typically, Fix(F) is a fractal; and by definition,
it is self-affine, that is, the union of affine copies of itself.

Figure 13. The black spleenwort fern.
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With certain technical hypotheses (the images of Fix(F)
under the f; should not overlap “too much”), the fractal
dimension d of Fix(F) is the unique value such that

vl

The Sierpifiski gasket is obviously equal to Fix(F)
when F = {F17 Fz, F3} and

Fi(z,y) = (g, %)»

Bz, y) = (z—;—l’ Q)

z 1 V3
F3(z,y) = <§+17%+T>

These three transformations correspond precisely to
“move halfway towards the vertices of an equilateral
triangle.” It is now clear that the point set defined by
playing the chaos game is almost surely a very close ap-
proximation to the invariant set for the corresponding
IFS, and that’s why we see the Sierpiniski gasket. Barnsley
[39] and Falconer [11] contain the proof, plus extensive
generalizations.

This observation has a curious and potentially impor-
tant consequence. Suppose you want to send a colleague
a picture of the Sierpiriski gasket. You could draw one
and run it through a fax machine. This will scan the page
in raster fashion and send several hundred thousand
numbers along the telephone lines, from which another
fax machine can reconstruct the picture. On the other
hand, if the recipient has a computer that can play the
chaos game, all you need do is send the numbers that
define the iterated function system — six per affine map,
18 altogether. This represents a considerable saving in
data to be transmitted.

As it happens, a great many natural objects have frac-
tal structure, and so can be given a “compressed” de-
scription as invariant sets of iterated function systems.
So can many nonfractals, such as a solid square (play the
chaos game with four points and a four-sided coin). The
traditional example is the black spleenwort fern (Figure
13). Although you might not often want to transmit a
black spleenwort fern, most pictures are made up out of
pieces that have the same kind of fractal structure, and
an extension of the notion of an IFS can be applied to
them: see Refs. 4043 and 48. Initially the method was
greeted with some skepticism, but it is a perfectly practi-
cal one: see Refs. 44 and 48. Commercial software to im-
plement the process is available —at commercial prices.
The whole story suggests a new view of complexity —
or at least, encourages a view more akin to algorithmic
information theory [45] —namely, it is the complexity of
the process that produces an object that is important, not
the apparent complexity of the object itself. Prescription,
not description, is the key. It is a point of view with sub-
stantial implications for evolutionary and developmen-
tal biology; see Ref. 46.

Encounters, Encounters, . . .

The variety of situations in which we encounter the
Sierpifiski gasket is considerable. Indeed, there are many
more such encounters scattered throughout the mathe-
matical literature: One I was told of recently is the graph
of positions for hexaflexagons. These ingenious mathe-
matical toys are described in Ref. 47.

Why do we meet the gasket in so many different
places? The underlying theme in all four encounters is
recursion: The Sierpinski gasket is the incarnation of re-
cursive geometry. Indeed, it is probably the simplest gen-
uinely two-dimensional recursive geometric object, just
as the Cantor set is the simplest one-dimensional one. (I
mean that the gasket lives in the plane—I'm not talking
about its fractal dimension.)

Even given this rationalisation, it is still rather odd that
it appears in so many guises.
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Williams, continued from p. 34.

Whether Daniel Gumb proved the theorem for himself
or was simply so impressed by the simplicity of the proof
that he decided to record it in stone is not clear. It is still
easily recognisable despite 250 years of weathering. This
proof is, of course, fairly well known. For example, it is
mentioned in Ref. 3 as “another proof.”

The cave is not very easy to find. Figure 2 shows it
in relation to the Cheesewring (and the author) with the
diagram easily recognisable on the roof. To those visit-
ing this part of Cornwall, and possibly considering the
astronomical significance of the Hurlers, the location of
Daniel Gumb’s cave and proof is left as an exercise.
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