CS106X Autumn 2015
Cynthia Lee

Assignment 3: Recursion Warm-Ups

Assignment handout authors and problem concept contributors include: Cynthia Lee, Marty Stepp, Jess Fisher,
Keith Schwarz, and Eric Roberts.

Due: Friday, October 16" at 5:00pm

Pair programming is permitted on this assignment. See course information sheet and honor code.

There are two Recursion assignments: Assignment 3 (Warm-Ups) and Assignment 4 (Boggle). You
could really think of them as one assignment, but we separate them out into two due dates to
alleviate risk of being overwhelmed at the last minute by such a large and (for many) tricky
coding project. After the Assignment 3 due date, there are only 5 days until the Boggle due date,
so you should plan to complete work on these warm-ups as soon as possible and, ideally, move
on to Boggle before the warm-up deadline.

The assignment has three main purposes:
1. To give you experience applying recursion as a solution to a variety of interesting
problem areas.
2. To give you experience applying a variety of recursion patterns.
3. Toserve as a “warm up” for the Boggle recursion assignment, a more substantial
software engineering endeavor.

General guidelines:

e For the these warm-up exercises, we specify the function prototype. Your function must
exactly match that prototype (same name, same arguments, same return type). You are
welcome to use a wrapper function as a way of structuring your code, as discussed in class.

e You must use recursion; even if you can come up with an iterative alternative, we insist
on a recursive formulation!

PROJECT 1: HUMAN PYRAMID (Cynthia Lee and Keith Schwarz)

A human pyramid is a formation of people where participants

make a horizontal row along the ground, and then additional rows Nor

of people climb on top of their backs. Each row contains 1 person A

fewer than the row below it. The top row has a single person in it. \q&ﬂ‘/
The image at right depicts a human pyramid with four rows. E c
Before you decide to participate in one of these, you may want to \; Ea:/

know how much weight you will be supporting.
ghty PP & < ﬂ A u & o
Your task is to write a function to compute the weight being G H |
supported by the knees of a given person in the human pyramid. ’ ‘ I \ ’ ‘

We will define the weight on a given person P's knees recursively



2

to be P's own weight, plus half of the weight on the knees of each of the two people directly above
P. For example, in the pyramid figure at right, the weight on the knees of person I below is I's
own weight, plus half of the weight on the knees of persons E and F.

The weight on the knees of persons E and F can be computed recursively using the same process;
for example, the weight on the knees of person E is E's own weight, plus half of the weight on the
knees of person B, plus half of the weight on the knees of person C. If a given person does not
have two people directly above them, any "blank" or "missing" persons should be ignored. For
example, the weight on the knees of person F in the figure at right is F's own weight, plus half of
the weight on the knees of person C. No truncation/rounding of the result should be done during
any of these recursive calculations.

To represent the pyramid we will use a 2-dimensional vector of vectors (we don’t use Grid
because much of it would be wasted), where each person's own weight in kilograms is stored as
a real number. So for example, weights[0][0] refers to the weight of the person at the top of
the pyramid, and weights[weights.size() - 1][0] refers to the weight of the bottom-left
person in the pyramid. The table below illustrates which person's weight from the above-right
tigure would be stored in which index of the vector. You can think of it as a left-aligned version
of the human pyramid figure.

col %] 1 2 3
row @ {{A},
1 {B, C},
2 {b, E, F},
3 {6, H, I, 3}}

Our provided code will create the nested vector of weights and pass it to your function. You may
assume that the vector passed to your function is valid and matches the structure described
above, such that the pyramid will always be fully filled in with values in the proper indexes. That
is, if there are n people on the bottom row, then there are n-1 people on the next row up, and n-
2 people on the next row above that, and so on. Use exactly this function signature:
double weightOnKnees(int row, int col,
const Vector<Vector<double>>& weights)

If the row/column passed is outside the bounds of the vector, return 0. Our starter code provides
the overall program and a loop to prompt for the pyramid's size. Here is a sample output:



How many people are on the bottom row? 4
Each person's own weight:

51.18

55.90 131.25

69.05 133.66 132.82

53.43 139.61 134.06 121.63

Weight on each person's knees:
51.18

81.49 156.84

109.80 252.82 211.24

108.32 320.92 366.09 227.25

Next step (special for CS106X):

Note that the naive recursive implementation of weightOnKnees will end up calculating the
weightOnKnees value for some people in the pyramid many times over. Write a second
implementation (same input/output, etc.) that reduces the runtime of your recursive algorithm
using memoization. Make a separate function, weightOnKneesFaster, with the same
signature:

double weightOnKneesFaster(int row, int col,

const Vector<Vector<double>>& weights)
and use it as a wrapper for a recursive function that passes an additional data structure for storing
the memos:

double weightOnKneesFaster(int row, int col,
const Vector<Vector<double>>& weights,
Vector<Vector<double>>& memos)

You should initialze the memos to be the same size (and 2™-dimension sizes) as the weights
vector (and its 2™ dimensions vectors), all “empty” (all value 0.0). As each person’s weight on
knees is calculated, store it in the corresponding indices location in memos and use it to speed
subsequent calculations. You may need to test on a very large pyramid before there is a
noticeable improvement in speed.

PROJECT 2: SIERPINSKI TRIANGLE (Marty Stepp)

For this problem, write a recursive function that draws the Sierpinski triangle fractal image:
void drawSierpinskiTriangle(GWindow& gw, double x, double y,
double size, int order)

Your function should draw a black outlined Sierpinski triangle when passed a reference to a
graphical window, the x/y coordinates of the top/left of the triangle, the length of each side of
the triangle, and the order of the figure to draw (such as 1 for Order-1, etc.). The provided files



4

already contain a main function that constructs the window and prompts the user to type an
order, then passes the relevant information to your function. The rest is up to you.

If the order passed is 0, your function should not draw anything. If the x, y, order, or size passed
is negative, your function should throw a string exception. Otherwise you may assume that the
window passed is large enough to draw the figure at the given position and size.

If you search the web for fractal designs, you will find many intricate wonders beyond the Koch
snowflake illustrated in Chapter 8. One of these is the Sierpinski Triangle, named after its
inventor, the Polish mathematician Waclaw Sierpinski (1882-1969). The order-1 Sierpinski
Triangle is an equilateral triangle, as shown in the diagram below.

To create an order-K Sierpinski Triangle, you draw three Sierpinski Triangles of order K-1, each
of which has half the edge length of the original. Those three triangles are placed in the corners
of the larger triangle. Take a look at the Order-2 Sierpinski triangle below to get the idea.

The upward-pointing triangle in the middle of the Order-2 figure is not drawn explicitly, but is
instead formed by the sides of the other three triangles. That area, moreover, is not recursively
subdivided and will remain unchanged at every order of the fractal decomposition. Thus, the
Order-3 Sierpinski Triangle has the same open area in the middle.

Order-1 Order-2 Order-3

The only GWindow member function you will need for this assignment is its drawL ine function:

// draws a line from point (x1, yl) to point (x2, y2)
gw.drawLine(x1, yl, x2, y2);

Note: You may find yourself needing to compute the height of a given
triangle so you can pass the right x/y coordinates to your function or
to the drawing functions. Keep in mind that the height h of an
equilateral triangle is not the same as its side length s. The diagram at
right shows the relationship between the triangle and its height. You
may want to look at information about equilateral triangles on

Wikipedia.



http://en.wikipedia.org/wiki/Equilateral_triangle

5

Your solution should not use any loops or data structures; you must use recursion. A particular
style of solution we want you to avoid is the "pair of functions" solution, where you write
one function to draw "downward-pointing" triangles and another to draw "upward-pointing"
triangles, and each calls the other in an alternating fashion. That is a poor solution that does not
capture the self-similarity inherent in this fractal figure. Another thing you should avoid is re-
drawing the same line multiple times. If your code is structured poorly, you end up drawing a
line again (or part of a line again) that was already drawn, which is unnecessary and inefficient.

PROJECT 3: MARBLE SOLITAIRE (Cynthia Lee)

The object of the Marble Solitaire game is to clear the board of marbles and leave the last remaining
marble in the center position. Each move consists of a marble jumping over one of its orthogonal
neighbors into an empty space. The jumped-over marble is cleared from the board. Some of you may
have seen a similar game at the Cracker Barrel restaurant chain, where it is presented as a wooden peg
board game, rather than with marbles (the board layout is also different).

The provided code will allow you to play the game. Do take a moment to play the game to learn the
rules for valid moves (briefly: no diagonal moves, jumps are only one marble wide, no jumping over an
already empty space). You will soon discover that it is challenging to solve. After a few failed attempts,
you might say to yourself (as I did over winter break in 2013), “I should just write a program to solve
this!” Fortunately, you will be doing exactly that for this assignment. You will write code that does a
randomized depth-first (recursive backtracking) search of all possible moves, starting from the
board configuration at the point where the human player gave up and asked the computer to take over.

Your only job is to implement the recursive part of the solver by filling in the body of the solvePuzzle
function in marbles. cpp. Although you should not edit anything else about the code, you may wish
to add helper functions to help with decomposition of the solvePuzzle function. The solvePuzzle
function signature is as follows:
bool solvePuzzle(const Grid<MarbleType>& board, int marblesLeft,
Set<uint32 t>& exploredBoards, Vector<Move>& moveHistory)
e board is the current game board configuration. More on what MarbleType is below, but the
idea is that it keeps track of which spaces are currently occupied by a marble, which are free,
and which are not playable (i.e. the four corners of the board where there are no marbles).
e marblesLeft is acount of the marbles remaining on the board (we keep this for convenience
so we don’t have to count from the board).

e exploredBoards is a set containing all the board configurations we have already explored.
Because it is possible to reach a given board configuration via different sequences of moves,
your recursive function should test if we have seen this board configuration before. If the
current board is found in exploredBoards., return false to avoid repeating work. (Also
be sure to add new boards to exploredBoards.) Note that the type is Set<uint32_t>&, not
Set<Grid<MarbleType>>&, as you might expect! More on this below.

e moveHistory is the sequence of moves that led to the current board (not including human-
played moves, if any). These are saved so that if/when a winning sequence is found and the
function returns, the original calling function can reproduce the sequence of moves in the
graphics display. More on what the Move type is below.



What we are providing for you:

Use the makeMove and undoMove functions that are provided for you.

You do not necessarily need to use the isValidMove function, which is designed to check
human moves for validity (humans can click anywhere and specify all sorts of invalid
moves!). As the computer player, you could just write your code to never attempt an
invalid move in the first place. That said, if you want to use isValidMove to, for example,
catch out of bounds moves or moves that attempt to jump over an already empty square,
you are welcome to do so.

Use our system for keeping track of previously explored boards, as described above (see
“exploredBoards” explanation). Note again that we do not store “Grid” type in
exploredBoards. The reason is that this would consume too much memory. To save
memory, we have provided you a way to pack your boards into a single 32-bit unsigned integer
(uint32_t). You don’t need to worry about this, just do the conversion from your Grid-based
board to the compressed uint32_t version using this provided function (found in
“compression.h”):

o uint32_t compressMarbleBoard(const Grid<MarbleType>& board)

Take a moment to look in marbletypes.h to learn about these important things you need
to use:

o You should use the Move struct provided in marbletypes.h. A struct is a
feature of C++ that Java programmers could think of as a super-lightweight class.
It is a way of gathering data into one place, but (usually) without the overhead of
a constructor, get/set methods, etc. All you need to know is that the Move struct
contains the data needed to represent one move as four fields: startRow,
startCol, endRow, endCol. Sample use:

Move mymove;
move.startCol = 3;

o Youwillalso need to use the following enum, representing the three possible states
of a position in the grid that represents the board. An enum is a C++ feature that is
similar to making global constant values (e.g., static const int N_ROWS)
that allow you to associate a name with some sentinel value. Compared to named
constants, enum has the added benefit that it collects in one place several possible
values a variable could take on:

o enum MarbleType {

MARBLE_OCCUPIED, /* has a marble in it */

MARBLE_EMPTY, /* could hold a marble but is empty */

MARBLE_INVALID /* can’t hold a marble (four corners) */

}s

Print out a status update message while the computer is playing, to let you know it’s still
“thinking.” It can sometimes take a long time to find a solution, so it is comforting for the
user to know that progress is being made. Insert this code at/near the beginning of your
solvePuzzle function (or you could put it in a helper function and call it from there):

if (exploredBoards.size() % 10000 == 0) {
cout << "Boards evaluated: " << exploredBoards.size()

<< "\tDepth: " << moveHistory.size() << endl;



cout.flush();

Important requirements:
e Your search should be depth-first, which means something roughly like this pseudocode:
solvePuzzle():
for each move in the list of possible next moves:
If solvePuzzle() with the new board after that move finds a solution, then
this move was a good move, return true!
Otherwise, undo the move and continue for loop

e Per the pseudocode above, you will want to have a function that finds all possible next
moves given the current board, so you can determine where the recursion should go next.
Suggested signature for this helper function (Move is defined in the starter code):
Vector<Move> findPossibleMoves(const Grid<MarbleType>& board);

e Randomization: Note that there are many possible sequences of moves to win the game,
but code with no randomization will always give the same solution given the same
starting configuration. Boring! You must randomize the order in which it explores next
moves by permuting the ordering of the Vector inside the findPossibleMoves
function. One easy way to do this is to have each insert operation into the vector insert
into a random index from @ to size(), instead of always adding to the end.

Debugging using the full board is infeasible because of the number of steps of calculation
involved. To give yourself a more manageable test case, experiment with pre-set board states
with only a few marbles left (just a few moves away from winning). We have included one like
this in the starter code.

EXTRA CREDIT PROJECT: RANDOM SENTENCE GENERATOR

For extra credit, write (or rewrite) the Assignment 2, Project 2, Part 2 (whew that’s a mouthful—
it’s the random sentence generator that used the grammar files) using recursion. Use all the same
grammar files, starter code, console interaction, and output behavior—except your solution
should use recursion instead of looping. You may choose appropriate data structures to support
your solution. Just be sure that your solution is fundamentally recursive, reflecting the inherent
recursive nature of the grammar rules.

GRADING AND GENERAL REMARKS (this applies to all parts)

e Note the instructions in the previous assignment about style, pass by reference, passing
by const reference, and so on.

e Don't forget to cite any sources you used in your comments. Please read the entire C5106
Honor Code on the course website.

o Refer to the course Style Guide for a more thorough discussion of good coding style.
e Do not use pointers, arrays, or STL containers on this program. You should also avoid



8

expensive operations that would cause you to reconstruct bulky collections multiple
times unnecessarily. For example, in N-grams, generate the map of prefixes exactly once;
do not regenerate it each time the user asks to generate random text.



