CS106X
Cynthia Lee Autumn 2015

Assignment 8: Stanford 1-2-3 GUI Extension Primer

Handout written by llan Goodman
What is this extension?

You may have noticed over the course of programming your Stanford 1-2-3 that it's
fun to play around with the spreadsheet using text commands in the console, but it would
be much more convenient if you could interact directly with the spreadsheet GUI and type
directly in there. If you try to do so right now, the changes will persist in the GUI, but they
do not affect the backend at all. The table interprets all strings literally and it does not
update our internal representation of the data. Essentially it's a one-way pipe of
information: the console commands will interact with our internal data state and will
become reflected on the table GUI, but any information fed into the GUI stays at that level.
We'd like to change this.

Cool! How do I do this?

Depending on how fancy you’d like to make it and how you designed your program
to begin with, you probably won’t have to change too many additional files. You will
definitely need to update sscontroller.cpp, may want to check out ssview.h/cpp, and
could need to tweak a couple other files.

Let’s start by adding some interactors to the screen! There’s a class called GButton
(take a look at the online documentation to familiarize yourself) in the Stanford libraries. If
you go into ssview.h/cpp, you can add GButtons to the window using syntax similar to:

GButton mybutton("My Action Command and Label");
addToRegion(&myButton, "SOUTH");
// This button takes space, so also update the GWindow dimensions

Be sure to think about whether you need the GButtons to be member variables or if they
can exist locally. Notice that the constructor for a GButton takes a string that functions
both as a label and as an action command. An action command serves as an identifier to
know which button was clicked on when we get an event notification in our event loop.
Speaking of which ...

Take a look at the interpretCommands function in sscontroller.cpp. The core of
this function is a loop that continually waits for the user to give a command and then acts
based on that command. You can do a similar thing for events, known as an event loop.
Your event loop will probably want to handle events from the table, the other interactors
you set up, and the window in case someone accidentally closes it. You will have to
#include "gevents.h" as well and your code will probably take the following structure:



while (true) {
GEvent event =
waitForEvent (ACTION_EVENT | TABLE_EVENT | WINDOW_EVENT);
if (event.getEventClass() == ACTION_EVENT) {
// Respond to button presses
GActionEvent actionEvent(event);
if (actionEvent.getActionCommand() == "cmdl") {
// Handle cmdl
} else if (...) {
// You can handle more command types
}
} else if (event.getEventClass() == WINDOW_EVENT) {
// Respond to closing of window by stopping event loop
if (event.getEventType() == WINDOW_CLOSED) {
break;
}
} else if (event.getEventClass() == TABLE_EVENT) {
// Respond to table cell updates
GTableEvent tableEvent(event);
// Handle tableEvent

}

When you write this, think about what buttons need to be added, what should
happen when a cell is updated in the table, what events are disallowed (you should not
allow a user to update the row or column labels, for example, and you still cannot let them
create a dependency loop), and what tricky cases there are (how do you handle a string
literal vs. a number vs. a formula or cell reference?). You also need to think carefully about
how you want the console and GUI to interact: you can get rid of the console entirely, you
can listen for both events and console input, or you can give the user a choice for some
sort of compromise. The documentation for GTable may be of use (please look through the
documentation for all these classes when you are unsure what you can use). Note that you
do not need to get every last detail perfect to receive extra credit. Focus on making the
table GUI interaction smooth, and from there you can add more nuance and other
interactors.

If you decomposed your code well enough in the original version of the assignment,
much of the event handling should be repurposing old code and it shouldn’t be too big of
an issue to plug in. Be sure to unify code wherever possible and don’t forget to test your
program thoroughly as you work your way through it. Please also remember to use
constants where appropriate, and absolutely document everything you do (we want to
understand the choices you made).




Anything else | need to know?

This is your extension, so do with it whatever you think will make the coolest
spreadsheet possible. Do you want to get rid of the console entirely and just interact with
the table and additional interactors? Do you want an option up front for the user to choose
console or interactors? Do you want an option every command? Do you want to listen for
both text and events at the same time? Do you only want to handle SETting in the GUI or
do you want to cover all types of commands? Do you want to add something not detailed
here? All these design choices are up to you, but please be sure to document everything
you do clearly and carefully.

As always, please submit one set of files with the basic functionality and no
extensions separately from the version with extensions to ensure that the extensions don’t
mess up the grading system in place. Also remember that extensions are graded for style as
well, so be sure to write clean code both for the basic functionality and the extensions you
implement.

Good luck and have fun!



