
CS106X  

Cynthia Lee Autumn 2015 

Assignment 7: Stanford 1-2-3  
Excellent assignment by Julie Zelenski, with minor revisions by Jerry Cain and Cynthia Lee. 

 
Due: Friday, December 4th at 11:59 p.m.1 

 

Pair programming is permitted on this assignment. See course information sheet and honor code.  

 
This is your last CS106X assignment! It is a chance to pull together your stellar C++ skills, design 
a complicated data structure, use a variety of existing classes, design and implement a few new 
ones, and build an awesome piece of productivity software. Your mission is to build a simple 
spreadsheet, starting with a slightly modified version of the expression evaluator presented in 
Chapter 19.  It's a wonderful and sophisticated task that is a capstone to all you've done so far. I 
can't think of a better way to top off our intense journey. When you look back at where you 
started in September, did you imagine you'd be ready for something this fancy just 2 months 
later?? 
 
This assignment has several purposes: 

1. To more fully explore the notion of object-oriented programming.  The program is broken 
down into classes that cooperatively interact.  Almost every one of the classes we studied 
this quarter has a role to play. 

2. To learn how C++ inheritance can be used for expression trees and how to implement 
simple recursive-descent parsing. 

3. To give you even more practice working with graphs and graph algorithms. 
4. To get a taste of the Model/View/Controller (MVC) structure used by many modern 

applications. 
5. To learn how to read, comprehend, and adapt existing code (in this case, the expression 

interpreter) to solve a different but related task.  The majority of programming people do 
in the industry consists of modifying existing systems rather than creating them from 
scratch.  

6. To experience the joys and frustration of designing a class interface/implementation. 
7. To create your own design rather than having the decisions made before you even start. 
8. To be a comprehensive capstone on the entire quarter. 

 

                                                         
1 Note that no late days may be used on this last assignment.  All submissions must come in by the 11:59 p.m. 

deadline. I suggest making preliminary submissions every few hours leading up to the deadline, so that if your final 

submission comes in a couple minutes late you have a fallback that was in on time for us to grade.  
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The task may sound a bit daunting, but never fear, there is a fair amount of infrastructure in place 
already.  However, there is still much for you to do, so don't delay getting started.  Make it your 
personal goal to have your final project be one that genuinely rocks. 
 
A NOTE ON OPEN-ENDED DESIGN  
Although we give you a lot of starter code and tons of suggestions, this assignment is more open-
ended than most and offers you the freedom to design things the way you want. There are a few 
isolated tasks for which we mandate a particular implementation strategy, but other than that, 
it's up to you to make sensible decisions.  Your program is expected to have the external behavior 
we describe, but you’re being given broad authority over the choices you make to build a working 
product.  This kind of open-ended design can be creative and fun, but there is also is potential to 
go astray with suboptimal choices that you later have to live with.  We recommend starting the 
design process early and carefully thinking through the alternatives and their tradeoffs.  We also 
strongly encourage you to run your design by your section leader—over email is fine—before 
you start coding to help you identify and correct potential problems earlier rather than later. 
 
THE GOAL 
One of the most important commercial programs to emerge from the personal computer 
revolution was the electronic spreadsheet.  The original VisiCalc system was a runaway success 
for Apple computers in the early 1980s, and many more advanced packages, such as Lotus 1-2-3 
and Microsoft Excel, have extended that basic idea so that spreadsheet programs are now used 
as the basis for an astonishing wide range of commercial applications.  At its core, a spreadsheet 
consists of a two-dimensional grid of cells, each indicated by a letter representing a column and 
a number representing a row. Here is a simple grade spreadsheet in Google docs: 
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In the spreadsheet, each cell contains a value, which can be: 
 

 a string, such as "Item" in A1 or "French hens" in A4. 
 a number, such as the quantities in column B or the prices in column C.  Note that these 

values can have decimal fractions and must therefore be represented using type double. 
(And the expression hierarchy has been updated to accommodate this change). 

 a formula linking other items in the spreadsheet.  Presumably, cell D2 was set so that its 
value is calculated by multiplying the values in cells B2 and C2.  Similarly, cell D14 is the 
sum of the values in cells D2 through D13.  Cells that reference other cells are said to have 
dependencies.  If the value in B2 or C2 changes, D2 will also need to be updated since it 
depends on those inputs. 

 
COMMANDS FOR THE SPREADSHEET CONTROLLER 
Let's first examine the program from the user's perspective, and postpone discussing its internals 
until we know what the program does.  It opens with a new empty spreadsheet.  Using a simple 
command-line interpreter interface reminiscent of a bad flashback to the 70s2, the user can 
enter text commands that operate on the spreadsheet.  
 

The command   

load <filename> 

reads the contents of a previously saved spreadsheet from the named file.  
 

The command   

save <filename> 

writes the current contents of the spreadsheet to the named file.   
 

The command   

clear  

clears the current contents of the spreadsheet.  
 

The command   

set <cellname> = <value> 

sets the current contents for the given cell, replacing any previous contents for that cell. The cell 
name is specified by column and row such as A3.  The value can be a string enclosed in double-
quotes or a numeric expression.  Below are some examples: 
 
 set A2 = "Beat Cal" 

                                                         
2 One strongly suggested extension is to make the spreadsheet GUI interactive rather than relying solely on the 

command-line interface. You need to keep the command-line interface in either case (because we will use that for 

autograding), but the hooks are there for you to add GUI interaction. 



  4  

 set B2 = 13.5 
 set C2 = B2 * (3 + A1) 

 

If the cell name or value is invalid or malformed, an error is reported and the command discarded.  
Otherwise, the new contents are displayed and all cells that depend on the updated value are 
updated. 
 

The command   

get <cellname> 

prints information for a given cell which include its contents and a list of the cell's dependencies: 
both those cells that this one directly depends on and those cells that directly depend on it. (We'll 
explain more about dependencies later in this handout). For example, given the cell contents 
above in the set commands, get C2 would print: 
 

C2 = (B2 * (3 + A1)) 
Cells that C2 directly depends on: A1 B2  
Cells that directly depend on C2: 
 

You are also welcome to use the get command to print any additional cell information (such as 
the indirect dependents) useful to your development and debugging.  In fitting with our general 
philosophy for this assignment, your output doesn’t have to match this output exactly; you just 
need to ensure that all our required information is present.  
 

The command   

help  

prints a simple help message describing the available commands. 
 

The command   

quit  

exits from the program.   
 
OVERVIEW: PROGRAM STRUCTURE 
The spreadsheet program is internally structured using the Model/View/Controller (MVC) 
design pattern favored by modern GUI applications.  The model manages the data being stored.  A 
view displays a visual representation of the model.  The controller provides a user interface (be it 
graphical widgets or a retro command-line) that offers the user a way to make changes to the 
model.  The controller responds to the user actions by messaging the model to update the data.  
When the model is changed, it notifies its view(s) to show the new data.  The benefit of MVC is 
that it divides the code into clean areas of responsibility, makes it possible to have multiple 
views/controllers on the same model, and allows you to easily try out different implementations 
for each component (abstraction FTW). 
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In the case of the spreadsheet, we supply the controller (the command-line interface) and the 
view (the graphical display).  The model is left for you to design and implement.  This class is 
where you will concentrate your efforts, while making compatible modifications to some of the 
other modules as well. 
 

To get oriented, here is a summary of the program structure: 
 
sscontroller This module houses the main program, which is responsible for the text-based 

interface.  It uses a TokenScanner to break apart the command line and 
messages the spreadsheet model with the changes.  Most of this module is 
written, but you’ll need to extend it to support one additional command. 

SSView This class provides a graphical spreadsheet display.  We provide the complete 
class and you will not need to make changes to it unless you want to. 

SSModel This class manages the spreadsheet and cell data model.  We provide a skeletal 
public interface and you will finish the design and provide the class 
implementation.  

Expression The project uses the exp and parser modules from the Chapter 19 expression 
evaluator with a few adjustments.  Most of this code will be used as is, but you 
will make additional modifications to support features required for the 
spreadsheet formulas. 

ssutil This module provides a few utility functions and the range formula functions 
(median, sum, max, etc.) for use in formulas. You may or may not need to make 
modifications to this module. 

 
The rest of this handout focuses on the modules that you’ll work on and then gives you a 
suggested course of action as to how you might go about tackling this assignment.  We’ve put the 
task breakdown last this time for a reason; we strongly suggest you read this handout thoroughly 
and get an idea of how all the pieces mesh together before you start doing any design or coding! 
 
THE SSCONTROLLER, SSVIEW, AND SSUTIL MODULES 
We provide these three modules to you in complete (or near-complete) form. 
 
The sscontroller module contains the main program loop that interacts with the user, 
reading and acting on commands.  It uses a TokenScanner to process the user's input and 
determines the appropriate action using a little command-dispatch table.  Our code correctly 
implements the controller responsibilities, except that it is missing the clear command, which 
clears the current spreadsheet contents.  You’re to add this command to the controller. 
 
Note that controller is tightly coupled to the expression evaluator code in Chapter 19.  One 
difference from the code given in the reader is that the interpreter loop for the spreadsheet 
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controller contains additional code to recover from errors.  If you are entering a formula and 
make a syntax error, you do not want your entire spreadsheet to bomb out with an error.  Even 
so, it is extremely convenient in the code to call error to produce the error messages.  Our 
implementation of the error function—which you’ve been seduced into believing automatically 
terminates program execution—actually throws an exception that’s caught in the primary repl. 
 
The ssview module provides the class that manages the appearance of the spreadsheet in the 
graphics window.  It includes member functions for displaying an empty spreadsheet and 
displaying the contents of a cell.  Your model should send messages to the view as needed to 
update the display when changes are made to the model.  Comments in the ssview.h file 
describe the public features of the class. Note that the window allows you to click and edit 
cells. The default version of the assignment does NOT use these changes, and you should 
NOT click to edit the spreadsheet in its default version. That said, we strongly suggest that 
you take the challenge of making the spreadsheet GUI window interactive in this way. We will 
provide a separate assignment handout explaining tips for how you can (optionally/extra 
credit) make the window interactive.  
 
The ssutil module has a few little utilities that didn't quite fit anywhere else.  It defines location 
and range types, functions to convert a cell name to location and vice versa, and code for the 
range formula functions (average, sum, max, etc.).  You are free to extend, change, or 
cannibalize the code in this module in any way you find helpful. 
 
HINTS AND REQUIREMENTS FOR THESE MODULES 
Adding the clear command to the controller requires just a few lines of code, but you must first 
work through the controller code to understand how to fit the required code into the overall 
program architecture. 
 
A range represents a set of cells between a start and stop cell inclusively. A range can span just 
one row or column or enclose a two-dimensional rectangular block of cells. Thus, ranges like 
A1:A4, A1:A1, A1:D1, and A1:D6 are valid. One thing to note is that a valid range is required to 
be non-empty, which means the stop cell must be at position that at least equal to the row and 
column of the start cell. 
 
The range record defined in ssutil stores a location for start and stop.  An alternative 
definition might represent the start and stop as string cell names.  In some places, you refer to a 
cell by its string name, other times you need its components, so either approach will require 
translation and ssutil supplies simple conversion functions. 
 
You can modify the supplied range formula functions to fit with your mechanism to access a 
range of cells (e.g. have the functions directly operate on your model) or just use the functions 
as given (you first extract the needed values into a Vector).  Either approach is fine with us. 
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Matching a range formula function name "median" to the appropriate function to execute 
should be implemented using the command table approach, like that used in the controller 
module.  It should be a simple task to add new range formula functions if you've designed it well. 
 
EXPRESSIONS AND PARSING 
Cell formulas can be built out of real numbers, references to other cells, parentheses, the four 
operators +, -, *, and /, as well as built-in functions applied to cell ranges.  Here are examples of 
some possible cell formulas: 
 

 5 * 1.08 
 A1 + A2 
 "Beat Cal!" 
 SUM(B1:B5)  
 (3 + A5)/average(A1:B5) + D10 - 5.5 

 
With a few modifications, the Expression classes are the perfect mechanism for managing cell 
contents.  We give you the code from Chapter 19 as your starting point, with our changes to allow 
real-value constants instead of integer constants and to add string literals enclosed in double-
quotes as a new expression type.  Although most of the expression code will be used as is, you do 
need to understand it thoroughly so you can properly adapt it for your purposes where necessary. 
 
The changes you are to make: 
1. Adapt expressions to work in the context of the spreadsheet model. Whereas the ordinary 

expression evaluator allows arbitrary use of identifier names for variables through a variable 

table, variables now must be references to spreadsheet cells.  Modify the parsing code so it 
accepts only cell names as identifiers, and update the evaluation code to retrieve the values for 

cells from the spreadsheet model. 

2. Add support for a new expression type of a function applied to a range. A range function 

expression apply a named function to a cell range, e.g. sum(A1:A5) applies the sum function 

to all cells from A1 to A5 inclusive.  The modified grammar for terms becomes: 

  T -> "string" 
  T -> number 
  T -> cellname 
  T -> function(cellname:cellname) 
   T -> ( E ) 

 
 This will require adding a new Expression subclass and making changes to the parsing code. 

The named functions that you are required to support are listed in the ssutil.h interface file. 

3. Add support for identifying dependencies. In order to report cell dependencies, you need to be 

able to find the dependent references within an expression.  This is a matter of walking the 

expression tree and reporting the dependencies found within the sub-expressions. 

 



  8  

HINTS AND REQUIREMENTS FOR EXPRESSIONS AND PARSING 
Starting from a working program that solves a different problem (in this case, the expression 
evaluator from the reader) is both a blessing and a curse. The Expression classes and parsing 
code will be a great help, but you may find yourself swimming in code at first and unsure of how 
to proceed.  It is essential that you understand the workings of the given expression code. We 
recommend re-reading Chapter 19 and going over the code with a fine-toothed comb.  If there's 
anything you don't understand, be sure to ask.  You do not need to make significant 
modifications, but figuring out how and where to make changes requires that you understand 
the existing code base. 
 
In the original expression evaluator, the assignment operator = could be part of an expression.  
In the spreadsheet, the = is a throwaway character in a set statement, and the expression that 
follows it can involve the arithmetic operators but not the = operator.  We already removed that 
feature from the expression modules we give you to avoid confusion. 
 
When parsing a cell formula, the parser should reject all malformed inputs (improper cell 
reference, unknown range formula function, invalid range, and so on). There are a lot of cases to 
consider, so do be thoughtful and test carefully.  Use error to report the problem and the 
exception handling in the controller will catch it and go on.  
 
When evaluating a cell formula, a reference to an empty or string cell is assumed to have value 
0.  If A1 = A2 + 5 and A2 = "hello", then A1 will show the result 5.  Similarly a function 
such as sum applied to a range of string cells would have a zero result. 
 
Formulas should be case-insensitive: cell references A2 and a2 and functions median and 
MedIAN are the same thing.  Be sure to use the virtual keyword to get the proper dynamic 
dispatch for any new member functions added to the base Expression class that are intended 
to be overridden by subclasses.  Just for reference, the expression/parsing modifications involve 
changing/adding about 50 lines of code. 
 
THE SPREADSHEET MODEL 
Your main task is designing and implementing the SSModel class to manage the cell data. We 
provide a skeletal interface that lists exactly those public features needed to interact properly 
with our controller and view.  You are to finish the design of the interface and implement the 
class. This is an excellent opportunity for you to think through the various options and make the 
decisions to suit yourself.  In the real world, it is rare that code you must write comes to you fully 
specified, and we want you to gain some experience in the issues and tradeoffs that come up. 
 
In general, the model is responsible for storing the contents of the cells, managing the 
relationships between cells, responding to requests from the controller, and notifying the view 
when things change.  You're likely to find designing this class to be an iterative process—you 
sketch out the features, but as you move forward, you discover problems or unanticipated needs 
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that necessitate changes and/or refinement.  Perhaps as the implementer you find some 
operations difficult or inefficient to support, or as the client, you encounter tasks that are 
awkward or even impossible.  Back to the design drawing board, to make additions and 
adjustments as needed. 
 
Most of the implementation strategy is left unspecified.  Consider the options and make your own 
well-reasoned decisions.  Keep in mind that you have the full collection of our classes at your 
disposal (sets, grids, maps, and so on) and more than one may be useful here.  Here are some 
questions to get you started thinking about the kind of issues that you need to address: 
 

o Should cells be created for each cell in the spreadsheet from the start or only on demand?  
What reasons are there to prefer one approach to the other? 

o What might the model use to store cells: A grid? A set? A map?  What supports easy lookup 
up by cell name?  What about by location? What allows easy iteration/mapping over 
the cells?  Would two ways of accessing the cells make sense or would it be overkill? 

o How are the contents for each cell stored?  What updating needs to happen when a cell's 
contents are changed? 

o Should a cell cache its computed result or re-compute on the fly?  If you store only the 
formula, each time you need the result you must re-evaluate it.  Instead you could 
evaluate the expression once and cached the result, and use it repeatedly, only discarding 
and re-computing when a dependency changes. What are the tradeoffs between the two 
approaches? 

o How might you support accessing the cells/values within a range: an iterator? a function 
that returns a set/vector of cell names or values? What is more convenient to 
use/implement? Are there good reasons to support more than one technique?  

 
One of your greatest challenges is dealing with cell formulas. The trickiness comes in the fact that 
changing a value in one cell may start a chain reaction of updates.  A cell that has a reference to 
another cell in its formula is said to be dependent on that cell. If the value in a cell is changed, the 
cells that depend on it also must be updated.  Dependencies can either be direct (where a cell has 
an explicit reference to another in its formula), or indirect (where a cell has a chain of references 
that eventually lead to that cell). Consider the following spreadsheet file: 
 

A1 = 10 
B1 = A1 * 2 
C1 = B1 + 5 
D1 = C1 / B1 
E1 = SUM(C1:D1)  
F1 = 22 

 
B1 directly depends on A1, C1 directly depends on B1, D1 directly depends on B1 and C1, and E1 
directly depends on C1 and D1. Both C1 and D1 indirectly depend on A1 (through B1), and E1 
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indirectly depends on A1 and B1.  One useful way to visualize the dependencies is in terms of a 
directed graph, as shown below: 
 

A1

B1

C1

D1

E1

F1

 
 
In this graph, the arcs trace the direction of propagating/outgoing dependencies.  The same arcs 
in reverse show the incoming dependencies.  For example, when A1 changes, it needs to 
propagate an update to B1 because the formula for B1 directly references A1.  Indirect 
dependencies are those cells connected through a longer path.  D1 indirectly depends on A1, 
since it relies on B1, which in turn relies on A1, this indirect dependency is represented as a path 
of arcs from A1 to D1. 
 
When the value of a cell is updated, you must update all cells that depend on it, either directly or 
indirectly. Tracing the paths away from A1, you can see that changing the value in A1 will require 
four other cells to be updated.  Changing F1, on the other hand, requires no changes to any other 
cells, since it has no outgoing dependencies. F1 also has no incoming dependencies, i.e., it is not 
affected by changes to any other cells.  
 
Traversing the dependent cells sounds suspiciously like depth or breadth-first traversal of the 
graph.  You can do this recursively or manually using a stack or a queue.  A simple (and 
acceptable) version might update some cells multiple times because there is more than one path 
between them (consider how D1 could be updated twice when traversing from A1).  The really 
slick way is to do a topological sort to efficiently order the cell updates so that each dependent cell 
is updated at most once, only after its dependents have been updated.  
 
There’s one more bit of trickiness with dependencies. What if the formula for A1 were 
sum(A1:E1)? To calculate the value of A1, you need the value of A1, but you don’t know what it 
is because you’re still trying to calculate it!  This kind of dependency is called a circular reference, 
and is bad news in a spreadsheet.  You should disallow all circular references.  An obvious circular 
reference would be an attempt to set A1 = A1, e.g. where a cell directly references itself.  The 
more sneaky form is via an indirect reference such as assigning A1 = E1 in the above example, 
which introduces a cycle in the graph.   
 
Before assigning a new formula to a cell, you should traverse the graph of dependencies to ensure 
it will not create a cycle.  Consider if the user tried to set A1 = F1 + E1 in the above graph. The 
two cells directly referenced by the formula are F1 and E1.  We examine the incoming 
dependencies for F1 and find none because it has no cells on which it depends, so this will be no 



  11  

problem.  Next we examine the arcs leading to E1, and find that is directly depends on C1 and 
D1. So far so good, but when we continue our recursive traversal to find the cells they depend on, 
we eventually run into A1, which is exactly what we didn't want to find.  The formula is 
disallowed because it is circular. 
 
HINTS AND REQUIREMENTS FOR ssmodel 
When setting a cell, first check for problems (invalid name, parsing issues, circular reference, 
etc.) and if any are found, discard the formula and leave the cell unchanged. It's best to do all the 
checks before making any changes, so you don't have to undo it halfway.  
 

o The file format used for the load and save commands is a simple text file containing a 
list of all non-empty cells, one cell per line. Here is an excerpt from the file displayed on 
page 2: 

 

A2 = "Partridge" 
B2 = 1 
C2 = 129.99 
D2 = B2 * C2 

 

o The ability to load and save files will be an invaluable time-saver for your testing.  We 
provide some sample saved files in the starting project as test cases.  You may assume that 
the contents of files being loaded are well formed, unlike the user's typo-ridden input, 
which must be gracefully handled at the command line. 

o We suggest getting basic cell assignment, display, load/save, etc. all working without 
tracking dependencies first.  Handle dependencies only after the underlying 
infrastructure is implemented and debugged.  

o You're free to represent the dependencies in any way you like (using pointers, sets, 
vectors, etc). You'll find that you need both outgoing dependencies, i.e., those cells that 
must be notified when this one changes, and incoming dependencies, i.e. which cells 
when changed require this one to update.  (You may need to think for a bit to see why).  
The incoming arcs are just the outgoing arcs reversed, so you can get away with only 
representing the arcs one-way, but it might be convenient to store them in such a way to 
enable easy access in either direction.  This little bit of redundancy makes some tasks 
easier. 

o Make sure you have a basic understanding of graphs and graph traversals.  We 
recommend drawing pictures to visualize.  Accidentally introducing cycles into the graph 
will create opportunity for infinite recursion (which may crash or lock up your computer, 
sigh), so be extra careful to avoid them. 

o The SSModel class has much more room for design decisions than previous assignments.  
We provide some starting suggestions, but much of how you structure things is up to you.  
You will likely find yourself wrestling with various decisions and tradeoffs.  There is no 
definitive "right" way, but there are better and worse choices.  Part of your job is 
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brainstorming your options, making thoughtful decisions, and documenting your 
reasoning.  Taking the time to make good choices early in the design phase can 
significantly pay off during implementation.  You are strongly encouraged to ask us for 
advice along the way— remember it is far easier to correct a questionable decision early 
in the process than when the code is further along. 

 
And don’t forget these: 

o Your design may have two or more classes that each depend on each other. An 
Expression class uses an SSModel object that in turn stores Expression objects.  
Think about the trouble of having ssmodel.h include exp.h while exp.h tries to 
include ssmodel.h! In C++, the mechanism for dealing with this is the forward reference. 
At the top of the ssmodel.h file, before you declare the SSModel class interface, you can 
insert a forward reference to a class it depends on, such as Expression, with this bit of 
syntax: 

class Expression; 
This forward reference informs the compiler that there will be a class named 
Expression. This allows the SSModel to happily continue on declaring data members 
and method parameter/return types that are of type Expression* since the compiler 
has been assured such a class will exist and will be seen later. 

o You are expected to properly dispose of any dynamically allocated memory.  This is 
particularly tricky, because the locations of many dynamically allocated objects are 
aliased and held in multiple places, and it’s a struggle to keep tabs on them so that 
everything is freed exactly one time! 

o In some situations, you’ll benefit from calling an Expression’s getType method to 
decide whether or not it’s safe to downcast (e.g. explicitly cast an Expression * to, say, 
a TextStringExp *) so that you’re able to invoke a method specific to the subclass. 

o Because this assignment is due at the end of your exam period, it’ll be graded without an 
interactive grading session.  Feedback will be available by Sunday, December 16th around 
5:00 p.m., and your section leader will email you notice that your online submissions has 
been graded. 

 
Good luck with the assignment, and we hope you enjoy it and appreciate it as a worthy capstone, 
something you couldn’t possibly have built 10 weeks ago. 
  


