
Page 1 of 6

CS106X

Autumn 2015

Instructor: Cynthia Lee

October 27, 2015

MIDTERM EXAM – SOLUTIONS

1. ADTs (34pts).

string buildRepetitionPattern(const string& word); // used in (a) and (b)

// Code for Part (a)

Map<string, Vector<string>> getPatterns(const Lexicon &english) {

 Map<string, Vector<string>> allPatterns;

 for(const string& word : english) {

 allPatterns[buildRepetitionPattern(word)].add(word);

 }

 return allPatterns;

}

string buildRepetitionPattern(const string& word) {

 Map<char, char> subChars;

 string pattern;

 char subChar = 'A';

 for (int i = 0; i < word.length(); i++) {

 if (subChars.containsKey(word[i])) {

 pattern += subChars[word[i]];

 } else {

 pattern += subChar;

 subChars[word[i]] = subChar;

 subChar++;

 }

 }

 return pattern;

}

// Code for Part (b)

bool satisfiesSubstitution(const string& origin, const string& targt,

 const Map<char, char>& knownSubstitutions);

Vector<string> getCandidatePlaintext(string ciphertextWord,

 const Map<string, Vector<string>> &patternToWords,

 const Map<char, char> &knownSubstitutions) {

 Map<char, char> reverseSubstitutions;

 for (const char& ch : knownSubstitutions) {

Page 2 of 6

 reverseSubstitutions[knownSubstitutions[ch]] = ch;

 }

 Vector<string> candidatePlaintext =

 patternToWords[buildRepetitionPattern(cipherTextWord)];

 Vector<string> filteredPlaintext;

 for (const string& candidate : candidatePlaintext) {

 if (satisfiesSubstitution(candidate, cipherTextWord, knownSubstitutions) &&

 satisfiesSubstitution(cipherTextWord, candidate, reverseSubstitutions)) {

 filteredPlaintext.add(candidate);

 }

 }

 return filteredPlaintext;

}

bool satisfiesSubstitution(const string& origin, const string& target,

 const Map<char, char>& knownSubstitutions) {

 for (int i = 0; i < origin.length(); i++) {

 if (knownSubstitutions.containsKey(origin[i]) &&

 knownSubstitutions[origin[i]] != target[i]) {

 return false;

 }

 }

 return true;

}

2. Pointers and Memory (18pts).

(a) DRAWING:

(b) CODE:

delete soTest.wow[0].wow;

delete[] soTest.wow;

Page 3 of 6

(c) DRAWING:

(d) CODE: (there are several correct solutions, these are two possibilities)

(*muchPoint) = NULL;

/* or */

soMidterm->wow = NULL;

3. Classes (30pts).

// In candybag.h

private:

 Map<CandyBar, int> candyCount;

 Map<string, Set<double>> candyWeights; // Avoid dups

 double totalWeight;

 int numCandyBars;

 double weightLimit;

 double weightOfType(const string& type);

};

// End of candybag.h file

Page 4 of 6

// Beginning of candybag.cpp file

#include "candybag.h"

// O(1)

CandyBag::CandyBag(const double& weightLimit, const double& bagWeight) {

 totalWeight = bagWeight;

 numCandyBars = 0;

 this->weightLimit = weightLimit;

}

// O(1)

CandyBag::~CandyBag() { }

// O(Number of Keys)

Vector<string> CandyBag::getCandyBarTypes() const {

 return candyWeights.keys();

}

// O(log N)

void CandyBag::addCandyBar(const string& type, const double& weight) {

 if (weight + totalWeight > weightLimit) {

 throw "I'm sorry, I cannot seem to hold more candy.";

 }

 candyCount[CandyBar(type, weight)]++;

 candyWeights[type] += weight;

 totalWeight += weight;

 numCandyBars++;

}

// O(log N)

int CandyBag::getNumOfDistinctCandyTypes(const string& type) {

 return candyWeights.get(type).size(); // .get() is safe to use here

}

double CandyBag::weightOfType(const string& type) {

 double totalWeight = 0.0;

 // .get() will return a default value if the map does not contain the key type

 for (const double& weight : candyWeights.get(type)) {

 totalWeight += weight * candyCount[CandyBar(type, weight)];

 }

 return totalWeight;

}

Page 5 of 6

// Requires a Set for efficiency

double CandyBag::getWeightOfCandyTypes(const Set<string>& types) {

 double weight = 0.0;

 for (const string& type : types) {

 weight += weightOfType(type);

 }

 return weight;

}

// O(log N)

CandyBag::CandyBar CandyBag::eatCandyBar() {

 if (numCandyBars == 0) {

 throw "Drat, no candy left!";

 }

 CandyBar result;

 // Get the first element in O(log N) time

 for (const CandyBar& candy : candyCount) {

 result = candy;

 break;

 }

 candyCount[result]--;

 if (candyCount[result] == 0) {

 candyCount.remove(result);

 if (candyWeights[result.type].size() == 1) {

 candyWeights.remove(result.type);

 } else {

 candyWeights[result.type].remove(result.weight);

 }

 }

 totalWeight -= result.weight;

 numCandyBars--;

 return result;

}

4. Recursion (26pts).

Set<Point> magicWand(const Grid<int> &image, Point pixel, int threshold) {

 Set<Point> allPoints;

 magicWand(image, pixel, image[pixel.row][pixel.col], threshold, allPoints);

 return allPoints;

}

void magicWand(const Grid<int> &image, Point pixel, int origColor, int threshold,

Set<Point>& allPoints) {

Page 6 of 6

 if (allPoints.contains(pixel) || !image.inBounds(pixel.row, pixel.col) ||

 pixelDiff(image[pixel.row][pixel.col], origColor) >= threshold) {

 return;

 }

 allPoints.add(pixel);

 magicWand(image, Point(pixel.row+1, pixel.col), origColor, threshold, allPoints);

 magicWand(image, Point(pixel.row-1, pixel.col), origColor, threshold, allPoints);

 magicWand(image, Point(pixel.row, pixel.col+1), origColor, threshold, allPoints);

 magicWand(image, Point(pixel.row, pixel.col-1), origColor, threshold, allPoints);

}

5. Big-O (12pts).

O(N2)

O(N2)

O(N2)

O(logN)

