Page 1 of 6

CS106X Instructor: Cynthia Lee

Autumn 2015 October 27, 2015

MIDTERM EXAM — SOLUTIONS

1. ADTs (34pts).

string buildRepetitionPattern(const string& word); // used in (a) and (b)
// Code for Part (a)

Map<string, Vector<string>> getPatterns(const Lexicon &english) {
Map<string, Vector<string>> allPatterns;
for(const string& word : english) {
allPatterns[buildRepetitionPattern(word)].add(word);
}

return allPatterns;

}

string buildRepetitionPattern(const string& word) {
Map<char, char> subChars;
string pattern;
char subChar = 'A';
for (int i = ©; i < word.length(); i++) {
if (subChars.containsKey(word[i])) {
pattern += subChars[word[i]];
} else {
pattern += subChar;
subChars[word[i]] = subChar;
subChar++;
}
}

return pattern;

}

// Code for Part (b)

bool satisfiesSubstitution(const string& origin, const string& targt,
const Map<char, char>& knownSubstitutions);

Vector<string> getCandidatePlaintext(string ciphertextWord,
const Map<string, Vector<string>> &patternToWords,
const Map<char, char> &knownSubstitutions) {

Map<char, char> reverseSubstitutions;
for (const char& ch : knownSubstitutions) {

Page 2 of 6

reverseSubstitutions[knownSubstitutions[ch]] = ch;
}
Vector<string> candidatePlaintext =
patternToWords[buildRepetitionPattern(cipherTextWord)];
Vector<string> filteredPlaintext;
for (const string& candidate : candidatePlaintext) {
if (satisfiesSubstitution(candidate, cipherTextWord, knownSubstitutions) &&
satisfiesSubstitution(cipherTextWord, candidate, reverseSubstitutions)) {
filteredPlaintext.add(candidate);

}
}

return filteredPlaintext;

}

bool satisfiesSubstitution(const string& origin, const string& target,
const Map<char, char>& knownSubstitutions) {

for (int i = ©; i < origin.length(); i++) {

if (knownSubstitutions.containsKey(origin[i]) &&

knownSubstitutions[origin[i]] != target[i]) {
return false;

}

}

return true;

}

2. Pointers and Memory (18pts).

(a) DRAWING:

(b) CODE:
delete soTest.wow[©@].wow;
delete[] soTest.wow;

Page 3 of 6

(c) DRAWING:

(d) CODE: (there are several correct solutions, these are two possibilities)
(*muchPoint) = NULL;

/* or */

soMidterm->wow = NULL;

3. Classes (30pts).
// In candybag.h

private:
Map<CandyBar, int> candyCount;
Map<string, Set<double>> candyWeights; // Avoid dups
double totalWeight;
int numCandyBars;
double weightLimit;

double weightOfType(const string& type);
s
// End of candybag.h file

Page 4 of 6

// Beginning of candybag.cpp file
#include "candybag.h"

// 0(1)

CandyBag: :CandyBag(const double& weightLimit, const double& bagWeight) {
totalWeight = bagWeight;
numCandyBars = 0;
this->weightlLimit = weightLimit;

}

// 0(1)
CandyBag: :~CandyBag() { }

// O(Number of Keys)
Vector<string> CandyBag::getCandyBarTypes() const {
return candyWeights.keys();

}

// 0(log N)
void CandyBag::addCandyBar(const string& type, const double& weight) {
if (weight + totalWeight > weightLimit) {
throw "I'm sorry, I cannot seem to hold more candy.";

}

candyCount[CandyBar(type, weight)]++;
candyWeights[type] += weight;
totalWeight += weight;
numCandyBars++;

}

// 0(log N)
int CandyBag::getNumOfDistinctCandyTypes(const string& type) {
return candyWeights.get(type).size(); // .get() is safe to use here

}

double CandyBag: :weightOfType(const string& type) {
double totalWeight = 0.0;

// .get() will return a default value if the map does not contain the key type
for (const double& weight : candyWeights.get(type)) {
totalWeight += weight * candyCount[CandyBar(type, weight)];

}

return totalWeight;

Page 5 of 6

// Requires a Set for efficiency
double CandyBag::getWeightOfCandyTypes(const Set<string>& types) {
double weight = 0.90;

for (const string& type : types) {
weight += weightOfType(type);

}

return weight;
}
// 0(log N)

CandyBag: :CandyBar CandyBag::eatCandyBar() {
if (numCandyBars == 0) {
throw "Drat, no candy left!";

}

CandyBar result;
// Get the first element in O(log N) time
for (const CandyBar& candy : candyCount) {
result = candy;
break;

}

candyCount[result]--;
if (candyCount[result] == 0) {
candyCount.remove(result);
if (candyWeights[result.type].size() == 1) {
candyWeights.remove(result.type);
} else {
candyWeights[result.type].remove(result.weight);
}
}

totalWeight -= result.weight;
numCandyBars--;

return result;

4. Recursion (26pts).

Set<Point> magicWand(const Grid<int> &image, Point pixel, int threshold) {
Set<Point> allPoints;
magicWand(image, pixel, image[pixel.row][pixel.col], threshold, allPoints);
return allPoints;

}

void magicWand(const Grid<int> &image, Point pixel, int origColor, int threshold,
Set<Point>& allPoints) {

Page 6 of 6

if (allPoints.contains(pixel) || !image.inBounds(pixel.row, pixel.col) ||
pixelDiff(image[pixel.row][pixel.col], origColor) >= threshold) {
return;

¥

allPoints.add(pixel);

magicWand(image, Point(pixel.row+1, pixel.col), origColor, threshold, allPoints);
magicWand(image, Point(pixel.row-1, pixel.col), origColor, threshold, allPoints);
magicWand(image, Point(pixel.row, pixel.col+1l), origColor, threshold, allPoints);
magicWand(image, Point(pixel.row, pixel.col-1), origColor, threshold, allPoints);

5. Big-O (12pts).

O(N?)
O(N?)
O(N?)
O(logN)

