
Page 1 of 16

CS106X

Autumn 2015

Instructor: Cynthia Lee

October 27, 2015

MIDTERM EXAM

NAME (LAST, FIRST): ___

SUNET ID: ___ @stanford.edu

Problem 1 2 3 4 5
TOTAL

Topic ADTs
Pointers,
Memory

Classes Recursion Big-O

Score

Possible 34 18 30 26 12 120

Instructions:

 The time for this exam is 2 hours. There are 120 points, or 1 point per minute. This gives you

some general idea of how to pace yourself on each problem.

 Use of anything other than a pencil, eraser, pen, one 8.5x11 page (two sides) of notes, and the

official textbook is prohibited. In particular, no computers or digital devices of any kind are

permitted. Blank scratch paper may be provided by proctors and does not need to be turned in.

 PLEASE rip off the pages of library reference in the back of the exam and do not turn them in.

 Please do NOT staple or otherwise insert new pages into the exam. Changing the number of

pages in the exam confuses our automatic scanning system. Thanks.

 SCPD and OAE: Please call or text 760-845-7489 if you have a question.

Please sign before you begin:

I agree to abide by the spirit and letter of the Honor Code, and to follow the instructions above.

___ ______________ ______________________

(Signature) (Date) (Start time - HH:MM zone)

Page 2 of 16

1. ADTs (34pts). A classic of cryptographic methods is the substitution cipher. In a substitution cipher,

each instance of a given letter is replaced throughout the text by some other letter, and this is done

for all letters. So, for example, if we use the substitutions d->Z, f->E, g->M, n->P, o->G, s->C,1 (and

letters not named going to various other letters), you get this:

[plaintext] goodness -> [ciphertext] MGGZPFCC

Note that each letter must map to a unique other letter (so having both c->Z and d->Z in the same

cipher is not allowed). One thing to note about substitution ciphers is that we can look at just the

encoded text of a word, without any idea of what the substitutions might have been, and still rule

out many words that could not have been the original plain text for it. For example, we know that

“MGGZPFCC” could not have been “bye” because they are not the same length. We also know that

“MGGZPFCC” could not have been “puzzling,” because even though they are the same length, we

don’t see the repetition of some substituted letter for “zz” in the right place in the word. This

examination of patterns of repeated and non-repeated letters is exactly what this problem will

undertake.

(a) (17pts) Write a function that, given a Lexicon (already initialized to a large set of English words,

you may assume all in lowercase), produces a mapping of repetition patterns to a list of words

matching that pattern. The patterns will be produced by taking a word and replacing the first

letter with 'A', the second unique letter with 'B', the third unique letter with 'C', and so

on. Here is a small example of what the map contents should be:

Pattern strings (map keys) Vectors of plaintext words (map values)
"ABC" { "dog", "cot", "bar", "gum" }
"ABA" { "mum", "bob" }
"ABB" { "zoo", "see", "ebb" }
"ABBC" { "good", "beet" }
"ABACDEFG" { "elephant" }

 The required function signature is:

Map<string, Vector<string>> getPatterns(const Lexicon &english)

 Suggestion: write a helper function that just does the pattern creation, because you’ll want

to use it in both Part(a) and Part(b). That way you only have to write that part once, and just

call it in both.

 Reminder: You can “add one” to a char to get the next letter in the alphabet (char c =

'A'; c++; // now c is 'B')

 Write your solution on the next page.

 Exam code isn’t scrutinized for style the way homework submissions are, but for an ADTs

problem you should pay attention to making good, clean, efficient use of the ADTs.

 In grading Part (b) of this problem, we will assume your Part (a) works as specified.

1 To make it very clear when we are talking about plaintext (the original message) and when we are talking about
the ciphertext or pattern strings, this problem will use all lowercase for plaintext and ALL CAPS for ciphertext and
pattern strings.

Page 3 of 16

Map<string, Vector<string>> getPatterns(const Lexicon &english) {

}

Page 4 of 16

(b) (17pts) Once we have our Map from Part (a) created, we want to use it to give us clues for

decoding ciphertexts by narrowing down the list of possible plaintexts for a given ciphertext

word. Write a function that, given a ciphertext string, the Map from Part (a), and a Map giving

any characters whose substitutions are already known (i.e., you already did some sleuthing and

you are certain you know the correct cipher mapping for some characters), returns a list of the

possible plaintext words that could correspond to the ciphertext. These examples all assume the

Map is the one from the example in Part (a):

Example 1:

Function input: Ciphertext word: "ZGZ", Known substitutions: g->L, q->R, k->F

Step 1: the pattern string for that ciphertext is "ABA"

Step 2: get this list out of the Map: { "mum", "bob" }

Step 3: filter the list to remove any that are incompatible with the provided known

substitutions (in this case both are compatible, so we return both).

Function returns: { "mum", "bob" }

Example 2:

Function input: Ciphertext word: "ZGZ", Known substitutions: b->Q, z->U

Step 1: the pattern string for that ciphertext is "ABA"

Step 2: get this list out of the Map: { "mum", "bob" }

Step 3: filter the list to remove any that are incompatible with the provided known

substitutions (in this case, "bob" is incompatible because we know b->Q).

Function returns: { "mum" }

Example 3:

Function input: Ciphertext word: "ZGZ", Known substitutions: o->G, c->D

Step 1: the pattern string for that ciphertext is "ABA"

Step 2: get this list out of the Map: { "mum", "bob" }

Step 3: filter the list to remove any that are incompatible with the provided known

substitutions (in this case, "mum" is incompatible because we know o->G).

Function returns: { "bob" }

 The required function signature is:

Vector<string> getCandidatePlaintext(string ciphertextWord,

const Map<string, Vector<string>> &patternToWords,

const Map<char, char> &knownSubstitutions)

 The patternToWords Map is the return value from Part (a).

 The knownSubstitutions Map is structured so that the keys are the plaintext

characters, and the values are the ciphtertext characters (e.g., 'o'->'G').

 Write your solution on the next page.

 Exam code isn’t scrutinized for style the way homework submissions are, but for an

ADTs problem you should pay attention to making good, clean, efficient use of the ADTs.

 In grading Part (b) of this problem, we will assume your Part (a) works as specified.

Page 5 of 16

Vector<string> getCandidatePlaintext(string ciphertextWord,

const Map<string, Vector<string>> &patternToWords,

const Map<char, char> &knownSubstitutions) {

}

Page 6 of 16

2. Pointers and Memory (18pts). Draw the state of memory at the end of the execution of this code.

Be careful in showing where your pointers originate and terminate (outer box vs. inner box). Leave

uninitialized or unspecified areas blank, and clearly mark NULL (write NULL or draw a slash through

the box). Draw the components in the appropriate stack and heap areas marked for you. Mark

memory that has been deleted by enclosing it in a circle with a slash through it, like this: but

leave it where it is, and do not change any pointer or other values unless they are actually changed.

 Doge soTest;

 soTest.much = 3;

 soTest.wow = new Doge[2];

 soTest.wow[0].wow = new Doge;

 soTest.wow[0].wow->much = 5;
 // (a) Draw the state of memory now

(a) (5pts) DRAWING:

Stack:

Heap:

(b) (4pts) In the space below, write the code that would be necessary to delete all the memory that

needs deleting at this point (so there could not be any memory leaks later). Do not write any

code that isn’t strictly necessary for accomplishing this. Then, update the above drawing (in Part

(a)) as if your lines of code have now been executed (i.e., mark any that memory was deleted by

your code).

struct Doge {
 int much;

 Doge *wow;
};

Page 7 of 16

 Doge *soMidterm = new Doge;

 soMidterm->much = 7;

 soMidterm->wow = new Doge[2];
 Doge **muchPoint = &(soMidterm->wow);

 // (c) Draw the state of memory now

(c) (5pts) DRAWING:

Stack:

Heap:

(d) (4pts) In the above drawing (Part (c)), label any memory that is already orphaned “Orphaned by

Part (c).” Then, in the space below, write one line of code that would result in some of the

memory in the above drawing to be orphaned. DO NOT EDIT THE DRAWING TO SHOW THE

RESULT OF EXECUTING YOUR CODE, except that you should circle all memory that your line of

could would orphan, if we executed it, and label it “Would be orphaned by Part (d).”

struct Doge {

 int much;

 Doge *wow;
};

Page 8 of 16

3. Classes (30pts). You’ve decided to “disrupt” the Trick-or-Treating market by writing an app that

keeps track of kids’ candy while they go trick or treating. As part of the app, you need to write a

CandyBag class to help you remember what candy you have picked up, how much you can carry,

and what candy you have remaining.

You are responsible for implementing the public interface given in the header file below, which

includes the constructor, destructor, and public functions of the class. Each function has a comment

that explains what it is responsible for doing as well as any special cases you need to handle. You

should design your use of ADTs to provide an efficient implementation. Read the function comments

carefully before beginning to code up any part of the class. We highly recommend that you plan out

how you will implement these functions and how they will interact with your private member

variables of the class before you begin writing any code on this problem.

You should write the implementation of the public functions as if you were writing the .cpp file of

the class, so make sure that you use the appropriate syntax. You should put any private class fields

that you would like to add into the private section of the header file below.

Please be sure to double-check that you implement all 7 functions, as well as the relevant private

data in the candybag.h file.

//beginning of candybag.h file

//assume necessary #includes are done

class CandyBag {

public:

 struct CandyBar { //assume all Stanford Library containers can hold this

 string type;
 double weight;

 CandyBar(string t="", double w=0.0) { type = t; weight = w; }

 };

 /* Create a CandyBag with the given weightLimit, which is the maximum

 * weight (bag weight plus candy weight) the candy bag can support.
 * Initially the bag has no candy. The variable bagWeight represents the

 * weight of the empty bag.

 */

 CandyBag(double weightLimit, double bagWeight);

 /* Delete any memory that this class is responsible for. */

 ~CandyBag();

 // candybag.h file continues on the next page

Page 9 of 16

// candybag.h file, continued

 /* Get a list of all candy bar types we have stored in our CandyBag.

 * There should be no duplicates in this list. If the CandyBag is empty,

 * return an empty Vector.

 */

 Vector<string> getCandyBarTypes();

 /* Add a candy bar of the given type and weight to the CandyBag (note

 * that candy bars of the same type may come in different sizes and hence

 * have different weights). If there is no room for this candy bar (we

 * cannot carry this much more weight), then throw an error politely

 * declining the candy bar.

 */
 void addCandyBar(const string& type, double weight);

 /* Chooses a candy bar (any one is fine) from the CandyBag, removes it

 * from the CandyBag, and returns that candy bar. If there is no candy

 * left in the CandyBag, then throw an error.

 */
 CandyBar eatCandyBar();

 /* Returns the number of different weight candy bars of the given type

 * the CandyBag currently holds. Should run in constant time. If no

 * candies of this type are present in the CandyBag, return 0.

 */

 int getNumOfDistinctCandyTypes(const string& type);

 /* Returns the total weight of the candy of the given candy types

 * currently held in our candy bag. If no candies of these types are

 * present in the CandyBag, return 0.0.

 */
 double getWeightOfCandyTypes(const Set<string>& types);

// candybag.h file continues on the next page

Page 10 of 16

// candybag.h file, continued

private:
 // TODO: Add any private fields or methods that you need for your

 // implementation. You may not need this much space.

};

// End of candybag.h file

// Beginning of candybag.cpp file

#include "candybag.h"

// TODO: Add implementations of your methods here

// candybag.cpp file continues next page

Page 11 of 16

// candybag.cpp file, continued

// End of candybag.cpp file

Page 12 of 16

4. Recursion (26pts). Recall from Fauxtoshop that images can be stored as a Grid<int>, where the
individual pixels (row/col entries) of the Grid are integers representing RGB values (encoded colors).
Your task is to implement a “magic wand selection tool” function. In some image editors, this

feature is represented by a magic wand icon: . The magic wand selection tool selects all the
pixels of the same (or similar) color within a contiguous region. The contiguous region can have any
shape and any size; its boundaries are determined solely based on when a different color (or an
edge of the Grid) is encountered. The user indicates one “start” pixel to select. Any adjacent
(up/down/left/right) pixels that are the same (or similar) color are also selected, as well as any
same-color (or similar to the original start pixel color) pixels adjacent to them, and so on.

The required function signature is:
Set<Point> magicWand(const Grid<int> &image, Point pixel, int threshold)

Example:

 This example uses the image at the right, where each pixel is
one small circle, and different colors are represented by
different patterns.

 Given the input Point pixel with coordinates row=1, col=4,
your function should return a Set containing the Point
coordinates {(1,2), (1,3), (1,4), (2,4), (3,4)}.
There are other areas of the image with the same “color,” but
they are not contiguous with the indicated pixel. We are
assuming that other colors in the image are more than threshold difference, and thus not
“very similar.”

Notes:

 You may use the function signature given above as a wrapper for an actual recursive
function that takes more parameters.

 The Point struct is as follows2:
struct Point {
 int row;
 int col;
 Point(int r=0, int c=0) { row = r; col = c; }
};

 To test if two colors are “very similar,” you should call a function int pixelDiff(int
color1, int color2). Assume this function is already defined for you, and just call it.
The order of arguments does not matter. You will consider two colors “very similar” if their
distance, according to pixelDiff’s return value, is strictly less than threshold.

 The shape defined by a given point includes the given point and all values that are
immediately adjacent (up, down, left, right, NOT diagonal) to some other pixel in the
shape, and have the same or similar color to the original starting pixel.

2 You may assume that operator == works on Points in an intuitive way, and that Points can be stored in any
Stanford Library container.

Page 13 of 16

Set<Point> magicWand(const Grid<int> &image, Point pixel, int threshold) {

}

Page 14 of 16

5. Big-O (12pts). Give a tight bound of the nearest runtime complexity class (worst-case) for each of

the following code fragments in Big-O notation, in terms of variable N. As a reminder, when doing

Big-O analysis, we write a simple expression, such as O(N2) or O(log N), not an exact calculation.

Write your answer in the blanks on the right side.

Question (3pts each) Answer

void myfunction(const Vector<int> &vec){
 int N = vec.size(); //assume N > 5
 for(int i = 0; i < vec.size(); i += (vec.size() / 5)) {
 for (int j = 0; j < vec.size(); j++) {
 for (int k = 0; k < vec.size() / 2; k++) {
 cout << vec[i] << endl;
 }
 for (int k = 0; k < vec.size() / 4; k++) {
 cout << vec[i] << endl;
 }
 }
 }
}

O()

int foofind(const Vector<int> &vec, int key) {
 int N = vec.size(); //assume N > 3
 int index = -1;
 for(int i = 0; i < vec.size(); i += 3) {
 int j = 0;
 while (vec[j] < key && j < N) {
 j++;
 }
 index = j – 1;
 }
 return index;
}

O()

void myfunction(const Vector<int> &vec) {
 int N = vec.size(); //assume N > 2
 for (int i = 0; i < N / 2; i++) {
 for (int j = i; j < N / 2; j++) { // note j = i
 cout << vec[j] << endl;
 }
 }
}

O()

void divider(int N) { // assume N > 2
 while (N > 2) {
 cout << (N /= 2) << endl;
 }
}

O()

Page 15 of 16

Summary of Relevant Data Types

We tried to include the most relevant member functions and operators for the

exam, but not all are listed. You are free to use ones not listed here that
you know exist. You do not need to do #include for these.

class string {

 bool empty() const;

 int size() const;

 int find(char ch) const;
 int find(char ch, int start) const;

 string substr(int start) const;

 string substr(int start, int length) const;

 char& operator[](int index);

 const char& operator[](int index) const;

};

class Vector {

 bool isEmpty() const;

 int size() const;

 void add(const Type& elem); // operator += used similarly

 void insert(int pos, const Type& elem);
 void remove(int pos);

 Type& operator[](int pos);

};

class Grid {

 int numRows() const;

 int numCols() const;

 bool inBounds(int row, int col) const;

 Type get(int row, int col) const; // cascade of operator [] also works

 void set(int row, int col, const Type& elem);

};

class Stack {

 bool isEmpty() const;

 void push(const Type& elem);

 Type pop();

};

class Queue {

 bool isEmpty() const;

 void enqueue(const Type& elem);

 Type dequeue();

};

Page 16 of 16

class Map {

 Vector<KeyType> keys() const;
 bool isEmpty() const;

 int size() const;

 void put(const Key& key, const Value& value);

 bool containsKey(const Key& key) const;

 Value get(const Key& key) const;

 Value& operator[](const Key& key);
};

Example range-based for: for (Key key : mymap){…}

class Set {

 bool isEmpty() const;

 int size() const;
 void add(const Type& elem); // operators + and += also add elements

 // operator + between sets is a set union operation, e.g., set1 + set2

 bool contains(const Type& elem) const;

};

Example range-based for: for (Type elem : myset){…}

class Lexicon {
 int size() const;
 bool isEmpty() const;
 void clear();
 void add(std::string word);
 bool contains(std::string word) const;
 bool containsPrefix(std::string prefix) const;
};

Example range-based for: for (string str : english){…}

