
Page 1 of 5

CS106X

Autumn 2015

Instructor: Cynthia Lee

Solutions

PRACTICE FINAL EXAM 2 - SOLUTIONS

1. Sorting

5 6 8 4 2 8 3 7 1

1 6 8 4 2 8 3 7 5

1 2 8 4 6 8 3 7 5

1 2 3 4 6 8 8 7 5

1 2 3 4 6 8 8 7 5

1 2 3 4 5 8 8 7 6

1 2 3 4 5 6 8 7 8

1 2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8 8

2. BFS/DFS

BFS: All possible full credit solutions:
A, C, D, B, E, H, G, J, F
A, C, D, B, E, H, J, G, F
A, C, D, E, B, H, G, J, F
A, C, D, E, B, H, J, G, F
A, D, C, B, H, E, G, J, F
A, D, C, B, H, E, J, G, F
A, D, C, H, B, E, G, J, F
A, D, C, H, B, E, J, G, F

DFS: All possible full credit solutions:
A, C, B, E, D, H, J, G, F
A, C, B, E, D, H, G, F, J

Page 2 of 5

A, C, E, B, D, H, J, G, F
A, C, E, B, D, H, G, F, J
A, D, H, J, G, F, C, E, B
A, D, H, J, G, F, C, B, E
A, D, H, G, F, J, C, E, B
A, D, H, G, F, J, C, B, E

3. Heap

Circle: YES

4. MST

(order in list does not matter)

Page 3 of 5

5. BST

6. ADTs

void moveLeft(Grid<int> &board) {
 // For each [row][col], we consider if something from the right
 // should move into this place, and there are two cases of this:
 // (1) if we are non-zero, see if a matching number merges into us
 // (2) if we are blank, see if a number moves into this space
 for (int row = 0; row < board.numRows(); row++) {
 for (int col = 0; col<board.numCols(); col++) {
 // (1) if we are non-zero, see if a matching number merges
 if (board[row][col] != 0) {
 for (int i = col + 1; i < board.numCols(); i++) {
 //matching number: merge
 if (board[row][i] == board[row][col]) {
 board[row][col] *= 2;
 board[row][i] = 0;
 break;
 //non-matching number: end search

Page 4 of 5

 } else if (board[row][i] != 0){
 break;
 }
 }
 }
 // (2) if we are blank, see if a number moves into this space
 else {
 for (int i = col + 1; i < board.numCols(); i++){
 if (board[row][i] != 0){
 board[row][col] = board[row][i];
 board[row][i] = 0;
 col--;
 break;
 }
 }
 }
 }
 }
}

7. Graphs

// This solution uses a DFS helper that is shared between parts (a) and (b). It
// finds all itineraries and then parts (a) and (b) examine the output to answer
// their specific questions about them (number of different ones, and longest one).
// It is also possible to write custom DFS for each part, with no shared code. That
// gives two simpler functions, but less reuse.

// Shared DFS is in two functions: start is a wrapper and go is the actual recursive
// function.
void startDFS(BasicGraph &map, Vertex *dorm,

 Vector<Vector<Vertex*> > &itineraries) {

 Vector<Vertex*> currentItinerary;

 currentItinerary.add(dorm);

 for (Vertex *neighbor : map.getNeighbors(dorm)) {

 if (!neighbor->visited) {

 neighbor->visited = true;

 goDFS(map, neighbor, dorm, currentItinerary, itineraries);

 neighbor->visited = false;

 }

 }

}

void goDFS(BasicGraph &map, Vertex *current, Vertex *dorm,

 Vector<Vertex*> currentItinerary,

 Vector<Vector<Vertex*> > &itineraries) {

 currentItinerary.add(current);

 if (current == dorm) {

 itineraries.add(currentItinerary);

 return;

 }

 for (Vertex *neighbor : map.getNeighbors(current)) {

Page 5 of 5

 if (!neighbor->visited) {

 neighbor->visited = true;

 goDFS(map, neighbor, dorm, currentItinerary, itineraries);

 neighbor->visited = false;

 }

 }

}

// this is the required function for (a), relies on two DFS helpers above

int countItineraries(BasicGraph &map, Vertex *dorm) {

 if (dorm == NULL) error("Dorm is null!");

 Vector<Vector<Vertex*> > itineraries;

 startDFS(map, dorm, itineraries);

 return itineraries.size();

}

// this is the required function for (b), relies on two DFS helpers above

int longestItinerary(BasicGraph &map, Vertex *dorm) {

 if (dorm == NULL) error("Dorm is null!");

 Vector<Vector<Vertex*> > itineraries;

 startDFS(map, dorm, itineraries);

 int longest = -1;

 for (Vector<Vertex*> itinerary : itineraries) {

 if (itinerary.size() > longest) {

 longest = itinerary.size();

 }

 }

 return longest;

}

8. Trees

bool isSubtree(Node *tree1, Node *tree2) {
 if (isSame(tree1, tree2)) return true;
 if (tree1 == NULL) return false;
 if (isSubtree(tree1->left, tree2)) return true;
 if (isSubtree(tree1->right, tree2)) return true;
 return false;
}

bool isSame(Node *tree1, Node *tree2) {
 if (tree1 == NULL && tree2 == NULL) return true;
 if (tree1 == NULL || tree2 == NULL) return false;
 if (tree1->value != tree2->value) return false;
 return isSame(tree1->left, tree2->left) && isSame(tree1->right, tree2->right);
}

