Page 1 of 5

Instructor: Cynthia Lee

CS106X

Solutions

Autumn 2015

PRACTICE FINAL EXAM 2 - SOLUTIONS

1. Sorting

5(6(8(4|2|8|3|7]|1

1/6|8|4(2|8|3|7]|5

1128468375

112|3(4|6|8|8|7]|5

1/2|3|4(6|8|8|7]|5

1/2|3|4(5|8|8|7|6

112|3(4|5/6|8|7|8

112|3(4|5|/6|7|8|8

1/2|3|4(5|/6|7(8|8

112|3(4|5|/6|7|8|8

2. BFS/DFS

| Iy I Sy N Iy I Iy Yy Yy
SESESES G
OSs0S0s0~
ITITTwuwuwuw
LW oo
IB,B,_._._.E,B,&H,H,
<00000000
nooooonoaoa

o<

possible full credit solutions:

F

ossible full credit solutions:
F
J

Page 2 of 5

LI

Circle: YES

4. MST

0I3900,
JOEIOO,
®e2®2@
619900,
"EYOF.
HOOEER:

n

(]

]

©

—

o

E s & & B
-

T b b 0

8= = = = =

5. BST

Page 3 of 5

Diagram after inserting (25,2):

@3

This one is completed for you as a node
formatting example.

Diagram after inserting (5,5):

(25, 2)
/
(5.5)

Diagram after inserting (19,3):

(25, 2)
/
(5.5)
\
(19,3)

Diagram after inserting (5,12):

(25, 2)
/
(5,12)
\
(19,3)

2/2 pts if they update value of 5 regardless of 5's
location in the tree

Diagram after inserting (40,5):

(25,2)
/ \
(5,12) (40,5)
\
(19,3)

Diagram after inserting (3,1):

(25,2)
/ \
(512) (40,5)
f: N

(3.1) (19,3)

6. ADTs

void movelLeft(Grid<int> &board) {
// For each [row][col], we consider if something from the right
// should move into this place, and there are two cases of this:
// (1) if we are non-zero, see if a matching number merges into us
// (2) if we are blank, see if a number moves into this space
for (int row = @; row < board.numRows(); row++) {
for (int col = @; col<board.numCols(); col++) {
// (1) if we are non-zero, see if a matching number merges
if (board[row][col] != 0) {
for (int i = col + 1; i < board.numCols(); i++) {
//matching number: merge
if (board[row][i] == board[row][col]) {
board[row][col] *= 2;
board[row][i] = ©;
break;
//non-matching number: end search

//
//

} else if (board[row][i] != 0){

break;
}
}
}
// (2) if we are blank, see if a number moves into this space
else {
for (int i = col + 1; i < board.numCols(); i++){
if (board[row][i] !'= 0){
board[row][col] = board[row][i];
board[row][i] = ©;
col--;
break;
}
}
}
}
}
Graphs

Page 4 of 5

This solution uses a DFS helper that is shared between parts (a) and (b). It
finds all itineraries and then parts (a) and (b) examine the output to answer
their specific questions about them (number of different ones, and longest one).
It is also possible to write custom DFS for each part, with no shared code. That

gives two simpler functions, but less reuse.

Shared DFS is in two functions: start is a wrapper and go is the actual recursive

function.

void startDFS(BasicGraph &map, Vertex *dorm,

}

Vector<Vector<Vertex*> > &itineraries) {
Vector<Vertex*> currentItinerary;
currentItinerary.add(dorm);
for (Vertex *neighbor : map.getNeighbors(dorm)) {
if (!neighbor->visited) {

neighbor->visited = true;

goDFS(map, neighbor, dorm, currentItinerary, itineraries);

neighbor->visited = false;

void goDFS(BasicGraph &map, Vertex *current, Vertex *dorm,

Vector<Vertex*> currentItinerary,
Vector<Vector<Vertex*> > &itineraries) {
currentItinerary.add(current);

if (current == dorm) {
itineraries.add(currentItinerary);
return;

}

for (Vertex *neighbor : map.getNeighbors(current)) {

Page 5 of 5

if (!neighbor->visited) {
neighbor->visited = true;
goDFS(map, neighbor, dorm, currentItinerary, itineraries);
neighbor->visited = false;

}

// this is the required function for (a), relies on two DFS helpers above
int countItineraries(BasicGraph &map, Vertex *dorm) {

if (dorm == NULL) error("Dorm is null!");

Vector<Vector<Vertex*> > itineraries;

startDFS(map, dorm, itineraries);

return itineraries.size();

}

// this is the required function for (b), relies on two DFS helpers above
int longestItinerary(BasicGraph &map, Vertex *dorm) {

if (dorm == NULL) error("Dorm is null!");

Vector<Vector<Vertex*> > itineraries;

startDFS(map, dorm, itineraries);

int longest = -1;

for (Vector<Vertex*> itinerary : itineraries) {

if (itinerary.size() > longest) {
longest = itinerary.size();

}
}
return longest;
}
8. Trees

bool isSubtree(Node *treel, Node *tree2) {
if (isSame(treel, tree2)) return true;
if (treel == NULL) return false;
if (isSubtree(treel->left, tree2)) return true;
if (isSubtree(treel->right, tree2)) return true;
return false;

}

bool isSame(Node *treel, Node *tree2) {
if (treel == NULL && tree2 == NULL) return true;
if (treel == NULL || tree2 == NULL) return false;
if (treel->value != tree2->value) return false;
return isSame(treel->left, tree2->left) && isSame(treel->right, tree2->right);

