Page 1 of 4

CS106X Instructor: Cynthia Lee

Autumn 2015 Practice Exam

PRACTICE MIDTERM EXAM — SOLUTIONS

1. ADTs (30pts).

int shortestLivingPath(Grid<int>& board, Point infected, Point dest) {
Queue<Vector<Point>> toExplore;
Set<Point> visited;
Vector<Point> startPath;
startPath.add(infected);
toExplore.enqueue(startPath);

while (!toExplore.isEmpty()) {
Vector<Point> currentPath = toExplore.dequeue();
Point end = currentPath[currentPath.size() - 1];
if (!board.inBounds(end.row, end.col) ||

board[end.row][end.col] == @ ||
visited.contains(infected)) {
continue;

}

if (end == dest) return currentPath.size();

visited.add(end);

for (int row = end.row - 1; row < end.row + 1; row++) {
for (int col = end.col - 1; col < end.col + 1; col++) {
if (row == end.row & col == end.col) continue;
Vector<Point> newPath = currentPath;
Point next(row, col);
newPath.add(next);
toExplore.enqueue(newPath);

}

return -1;

Page 2 of 4

2. Pointers and Memory (21pts).

Heap:

~

DRAWING:
Stack:
4 6 8
—|_‘;
vamp
stake

3. Classes (30pts).
a) (5 Points)

class Lecture {
public:

Lecture(DayPattern daysOfWeek, int startTime, int duration);

int startTime() const;
int durationInMinutes() const;
DayPattern daysOfWeek() const;

int endTime() const;
bool overlapsWith(const Lecture& other);

private:
int startTime;
int durationInMinutes;
DayPattern daysOfWeek;

}s

b) (10 Points)

Lecture::Lecture(DayPattern daysOfWeek, int startTime, int duration) {

Page 3 of 4

this->daysOflWeek = daysOfWeek;
this->startTime = startTime;
this->duration = duration;

}

int Lecture::startTime() {
return this->startTime;

}

int Lecture::durationInMinutes() const {
return this->duration;

}

DayPattern Lecture::daysOfiWeek() const {
return this->daysOflWeek;
}

c) (15 Points)

int Lecture::endTime() const {
int startHour = startTime / 100;
int startMinute = startTiem % 100;
int endHour = (duration + startMinute) / 60 + startHour;
int endMinute = (startMinute + duration) % 60;
return 100 * endHour + endMinute;

}

bool Lecture::overlapsWith(const Lecture& other) {
if (this->daysOfWeek() != other->daysOfWeek()) return false;
return !(this->endTime() <= other->startTime() ||
other->endTime() <= this->startTime());

4, Recursion (30pts).

bool canTakeAtLeastKUnits(const Vector<string>& interestingClasses,
const Map<string, Lecture>& schedule,
const Map<string, int>& units,
int k,
Vector<string>& mySchedule) {
Vector<string> coursesCopy = interestingClasses;
return canTakeAtLeastKUnitsRec(coursesCopy, schedule, units, k, mySchedule);

}

bool canTakeClass(const string& courseName, const Vector<string>& mySchedule,
const Map<string, Lecture>& schedule) {
Lecture thislLecture = schedule[courseName];
for (string otherlLecture : mySchedule) {
if (thisLecture.overlapsWith(schedule[otherLecture])) return false;

}

Page 4 of 4

}

return true;

bool canTakeAtLeastKUnitsRec(Vector<string>& interestingClasses,

const Map<string, Lecture>& schedule,
const Map<string, int>& units,
int k,
Vector<string>& mySchedule) {
if (k <= @) return true;
if (interestingClasses.isEmpty()) return false;

string nextCourseName = interestingClasses[0];
interestingClasses.remove(9);
if (canTakeClass(nextCourseName, mySchedule, schedule)) {
mySchedule += nextCourseName;
int remainingUnits = k - units[nextCourseName];
if (canTakeAtLeastKUnitsRec(interestingClasses, schedule, units,
remainingUnits, mySchedule)) {
return true;
}
mySchedule.remove(mySchedule.size() - 1);
} else if (canTakeAtLeastKUnitsRec(interestingClasses, schedule, units,
k, mySchedule)) {
return true;
}
interestingClasses.insert(@, nextCourseName);
return false;

5. Big-O (9pts).

0(1)

O(NlogN)
O(N?)

