
Page 1 of 4

CS106X

Autumn 2015

Instructor: Cynthia Lee

Practice Exam

PRACTICE MIDTERM EXAM – SOLUTIONS

1. ADTs (30pts).

int shortestLivingPath(Grid<int>& board, Point infected, Point dest) {

Queue<Vector<Point>> toExplore;

Set<Point> visited;

Vector<Point> startPath;

startPath.add(infected);

toExplore.enqueue(startPath);

while (!toExplore.isEmpty()) {

 Vector<Point> currentPath = toExplore.dequeue();

 Point end = currentPath[currentPath.size() - 1];

 if (!board.inBounds(end.row, end.col) ||

 board[end.row][end.col] == 0 ||

 visited.contains(infected)) {

 continue;

 }

 if (end == dest) return currentPath.size();

 visited.add(end);

 for (int row = end.row - 1; row < end.row + 1; row++) {

 for (int col = end.col - 1; col < end.col + 1; col++) {

 if (row == end.row && col == end.col) continue;

 Vector<Point> newPath = currentPath;

 Point next(row, col);

 newPath.add(next);

 toExplore.enqueue(newPath);

 }

 }

}

return -1;

}

Page 2 of 4

2. Pointers and Memory (21pts).

DRAWING:

Stack:

4 6 8

vamp

stake

Heap:

3. Classes (30pts).

a) (5 Points)

class Lecture {

public:

 Lecture(DayPattern daysOfWeek, int startTime, int duration);

 int startTime() const;

 int durationInMinutes() const;

 DayPattern daysOfWeek() const;

 int endTime() const;

 bool overlapsWith(const Lecture& other);

private:

 int startTime;

 int durationInMinutes;

 DayPattern daysOfWeek;

};

b) (10 Points)
Lecture::Lecture(DayPattern daysOfWeek, int startTime, int duration) {

Page 3 of 4

 this->daysOfWeek = daysOfWeek;

 this->startTime = startTime;

 this->duration = duration;

}

int Lecture::startTime() {

 return this->startTime;

}

int Lecture::durationInMinutes() const {

 return this->duration;

}

DayPattern Lecture::daysOfWeek() const {

 return this->daysOfWeek;

}

c) (15 Points)

int Lecture::endTime() const {

 int startHour = startTime / 100;

 int startMinute = startTiem % 100;

 int endHour = (duration + startMinute) / 60 + startHour;

 int endMinute = (startMinute + duration) % 60;

 return 100 * endHour + endMinute;

}

bool Lecture::overlapsWith(const Lecture& other) {

 if (this->daysOfWeek() != other->daysOfWeek()) return false;

 return !(this->endTime() <= other->startTime() ||

 other->endTime() <= this->startTime());

}

4. Recursion (30pts).

bool canTakeAtLeastKUnits(const Vector<string>& interestingClasses,
 const Map<string, Lecture>& schedule,

 const Map<string, int>& units,

 int k,

 Vector<string>& mySchedule) {

 Vector<string> coursesCopy = interestingClasses;

 return canTakeAtLeastKUnitsRec(coursesCopy, schedule, units, k, mySchedule);

}

bool canTakeClass(const string& courseName, const Vector<string>& mySchedule,

 const Map<string, Lecture>& schedule) {

 Lecture thisLecture = schedule[courseName];

 for (string otherLecture : mySchedule) {

 if (thisLecture.overlapsWith(schedule[otherLecture])) return false;

Page 4 of 4

 }

 return true;

}

bool canTakeAtLeastKUnitsRec(Vector<string>& interestingClasses,

 const Map<string, Lecture>& schedule,

 const Map<string, int>& units,

 int k,

 Vector<string>& mySchedule) {

 if (k <= 0) return true;

 if (interestingClasses.isEmpty()) return false;

 string nextCourseName = interestingClasses[0];

 interestingClasses.remove(0);

 if (canTakeClass(nextCourseName, mySchedule, schedule)) {

 mySchedule += nextCourseName;

 int remainingUnits = k – units[nextCourseName];

 if (canTakeAtLeastKUnitsRec(interestingClasses, schedule, units,

 remainingUnits, mySchedule)) {

 return true;

 }

 mySchedule.remove(mySchedule.size() – 1);

 } else if (canTakeAtLeastKUnitsRec(interestingClasses, schedule, units,

 k, mySchedule)) {

 return true;

 }

 interestingClasses.insert(0, nextCourseName);

 return false;

}

5. Big-O (9pts).

O(1)

O(NlogN)

O(N2)

