
Page 1 of 5

CS106X

Autumn 2015

Instructor: Cynthia Lee

Practice Exam

PRACTICE MIDTERM EXAM – SOLUTIONS

1. ADTs (30pts).
bool canFit(Grid<bool>& puzzle, Grid<bool> piece) {
 for (int turn=0; turn<4; turn++){
 for (int row=0; row<board.numRows()-piece.numRows()+1; row++){
 for (int col=0; col<puzzle.numCols()-piece.numCols()+1; col++){
 bool foundConflict = false;
 for (int i=0; i<piece.numRows(); i++){
 for (int j=0; j<piece.numCols(); j++){
 if (piece[i][j] && puzzle[row+i][col+j]){
 foundConflict = true;
 break;
 }
 }
 }
 if (!foundConflict){
 for (int i=0; i<piece.numRows(); i++){
 for (int j=0; j<piece.numCols(); j++){
 if (piece[i][j]) puzzle[row+i][col+j] = true;
 }
 }
 return true;
 }
 }
 }
 rotate90(piece);
 }
 return false;
}

void rotate90(Grid<bool>& piece) {
 Grid<bool> newpiece(piece.numCols(),piece.numRows());
 for (int r=0; r<piece.numRows(); r++)
 for (int c=0; c<piece.numCols(); c++)
 newpiece[c][piece.numRows()-1-r] = piece[r][c];
 piece = newpiece;
}

Page 2 of 5

2. Pointers and Memory (21pts).

DRAWING #1:

 Stack Heap

 network

 7

 4

 burrow

DRAWING #2:

 Stack Heap

 network

 7

 4

 burrow

 botts

Page 3 of 5

DRAWING #3:

 Stack Heap

 ORPHANED

 network

 7

 7

 4

 burrow

 botts

3. Classes (30pts).

// in farm.h file

private:

 struct Animal {

 string type;

 int cost;

 };

 int capacity;

 Vector<Animal> animals;

};

//end of farm.h file

//beginning of farm.cpp file

#include “farm.h”

Farm::Farm(int capacity) {

 this->capacity = capacity;

}

Farm::~Farm() { }

Page 4 of 5

Vector<string> Farm::getAnimalTypes() {

 Vector<string> noDupes;

 Set<string> types;

 for(Animal a : animals) types.add(a.type);

 for(string type : types) noDupes.add(type);

 return noDupes;

}

int Farm::getTotalNumberOfAnimals() {

 return animals.size();

}

int Farm::getTotalCost() {

 int totalCost = 0;

 for (Animal a : animals) totalCost += a.cost;

 return totalCost;

}

void Farm::addAnimal(string type, int cost) {

 if (capacity == animals.size()) error(“No more room on farm”);

 Animal newAnimal;

 newAnimal.type = type;

 newAnimal.cost = cost;

 animals.add(newAnimal);

}

void Farm::removeAnimal(string type) {

 for (int i = 0; i < animals.size(); i++) {

 if (animals[i].type == type) {

 animals.remove(i);

 return;

 }

 }

 error (“Animal of that type does not exist on this farm”);

}

int Farm::getNumberOfAnimalType(string type) {

 int count = 0;

 for (Animal a : animals) {

 if (a.type == type) count++;

 }

 return count;

}

Page 5 of 5

4. Recursion (30pts). Recursive Backtracking (30pts).

static bool canWrite(string str, unsigned int n, map<int, int> &useCount) {
if(str.length() == 0) return true;
if(isspace(str[0])) return canWrite(str.substr(1), n, useCount);
for(int i = 0; i < 16; i++) {

if(useCount[i] < n && kStandardCubes[i].find(str[0]) != string::npos) {
useCount[i]++;
if(canWrite(str.substr(1), n, useCount)) return true;
useCount[i]--;

}
}
return false;

}

static bool canWriteInCubes(string str, unsigned int n) {

map<int, int> useCount;
return canWrite(str, n, useCount);

}

5. Big-O (9pts).

O(N2)

O(N2)

O(N)

