Page 1 of 5

CS106X Instructor: Cynthia Lee

Autumn 2015 Practice Exam

PRACTICE MIDTERM EXAM — SOLUTIONS

1. ADTs (30pts).
bool canFit(Grid<bool>& puzzle, Grid<bool> piece) {
for (int turn=0; turn<4; turn++){
for (int row=0; row<board.numRows()-piece.numRows()+1; row++){
for (int col=0; col<puzzle.numCols()-piece.numCols()+1; col++){
bool foundConflict = false;
for (int i=0; i<piece.numRows(); i++){
for (int j=0; j<piece.numCols(); j++){
if (piece[i][]j] && puzzle[row+i][col+j]){
foundConflict = true;
break;

}
}
if (!foundConflict){
for (int i=0; i<piece.numRows(); i++){
for (int j=0; j<piece.numCols(); j++){
if (piece[i][j]) puzzle[row+i][col+j] = true;

}
}
return true;
}
}
}
rotate90(piece);
¥
return false;

}

void rotate90(Grid<bool>& piece) {
Grid<bool> newpiece(piece.numCols(),piece.numRows());
for (int r=@; r<piece.numRows(); r++)
for (int c=0; c<piece.numCols(); c++)
newpiece[c][piece.numRows()-1-r] = piece[r][c];
piece = newpiece;

}




Page 2 of 5

2. Pointers and Memory (21pts).

DRAWING #1:
Stack
— I — —>
4
/
burrow
S~——
DRAWING #2:
Stack
network

| =N

\
/’

burrow

botts

Heap

Heap




DRAWING #3:

Stack

Heap

ORPHANED

network

burrow

botts

Page 3 of 5

3. Classes (30pts).
// in farm.h file

private:
struct Animal {
string type;
int cost;
s
int capacity;
Vector<Animal> animals;
s
//end of farm.h file

//beginning of farm.cpp file
#include “farm.h”

Farm::Farm(int capacity) {
this->capacity = capacity;

}

Farm::~Farm() { }



Page 4 of 5

Vector<string> Farm::getAnimalTypes() {
Vector<string> noDupes;
Set<string> types;
for(Animal a : animals) types.add(a.type);
for(string type : types) noDupes.add(type);
return noDupes;

}

int Farm::getTotalNumberOfAnimals() {
return animals.size();

}

int Farm::getTotalCost() {
int totalCost = ©;
for (Animal a : animals) totalCost += a.cost;
return totalCost;

void Farm::addAnimal(string type, int cost) {
if (capacity == animals.size()) error(“No more room on farm”);
Animal newAnimal;
newAnimal.type = type;
newAnimal.cost = cost;
animals.add(newAnimal);
}
void Farm::removeAnimal(string type) {
for (int i = @; i < animals.size(); i++) {
if (animals[i].type == type) {
animals.remove(i);
return;

}
}

error (“Animal of that type does not exist on this farm”);

}

int Farm::getNumberOfAnimalType(string type) {
int count = 0;
for (Animal a : animals) {
if (a.type == type) count++;
}

return count;




Page 5 of 5

4. Recursion (30pts). Recursive Backtracking (30pts).

static bool canWrite(string str, unsigned int n, map<int, int> &useCount) {
if(str.length() == ©) return true;
if(isspace(str[@])) return canWrite(str.substr(1), n, useCount);
for(int i = 0; i < 16; i++) {
if(useCount[i] < n && kStandardCubes[i].find(str[@]) != string::npos) {
useCount[i]++;
if(canWrite(str.substr(1), n, useCount)) return true;
useCount[i]--;
}
}

return false;

}

static bool canWriteInCubes(string str, unsigned int n) {
map<int, int> useCount;
return canWrite(str, n, useCount);

5. Big-0O (9pts).

O(N?)
O(N?)
O(N)



