
Programming Abstractions

Cynthia Lee

C S 1 0 6 X

Today’s Topics

Introducing C++ from the Java Programmer’s Perspective

 firstprogram.cpp

› Function prototypes

› <iostream> and cout

› "simpio.h" and getLine()

 Absolute value example

› C++ strings and streams

C++ from the Java
Programmer’s

Perspective

(B U T I T ’ S O K I F Y O U

D O N ’ T K N O W J A V A !)

A first C++ program (Error)

#include <iostream>

#include "console.h"

using namespace std;

int main(){

cout << "|-5| = "

<< absoluteValue(-5)
<< endl;

return 0;

}

int absoluteValue(int n) {

if (n<0){

return -n;

}

return n;

}

4

firstprogram.cpp

A first C++ program (Fixed #1)

#include <iostream>

#include "console.h"

using namespace std;

int absoluteValue(int n) {

if (n<0){

return -n;

}

return n;

}

int main(){

cout << "|-5| = "

<< absoluteValue(-5)
<< endl;

return 0;

}

5

firstprogram.cpp

A first C++ program (Fixed #2)

#include <iostream>

#include "console.h"

using namespace std;

int absoluteValue(int n);

int main(){

cout << "|-5| = "

<< absoluteValue(-5)
<< endl;

return 0;

}

int absoluteValue(int n) {

if (n<0){

return -n;

}

return n;

}

6

firstprogram.cpp

Design Question: Why does C++ have the
function prototype syntax?

In other words, why not just have a rule that you must set up the

ordering so you define your functions before using them, as in

the "FIXED 1" example?

A. C++ could have done that, but such a rule would be too

cumbersome for programmers to follow.

B. C++ could have done that, but good programming style

dictates "top-down" approach that logically puts main() first

and helper functions it calls to follow.

C. C++ could not have done that, because sometimes there is

no way to order the functions so that all functions are

defined before being used.

D. Other/none/more than one of the above

Design Question: Why does C++ have the
function prototype syntax?

(A) and (B) The rationales behind choices (A)
and (B) (previous slide) are correct

› May or may not have been enough to
compel the language designers to introduce
the function prototype feature

(C) is true—there are cases where you simply
cannot rearrange the ordering of functions to
avoid all cases of use before definition

› e.g., mutual recursion

Which came first, the chicken or the egg?
(this code is just for fun, for now—we’ll cover recursion in depth in a few weeks!)

#include<iostream>

#include "console.h"

using namespace std;

void go(int n);

void stanford(int n);

int main(){

int n = 5;

go(n);

return 0;

}

void go(int n) {

if (n == 0) return;

cout << "Go!" << endl;

stanford(n-1);

}

void stanford(int n) {

cout << "Stanford!" << endl;

go(n);

}

Go Stanford Modifications Code Demo:
What did we just see?

 You can read in input with:

› cin (<iostream>)

› getInteger(), getLine(), etc (“simpio.h”)

 You can use getLine() as a way of pausing the program to wait

for you to hit Enter before exiting (so you can see what

happened!)

› (depending on operating system and Qt configuration, may

not be necessary)

 cin and cout use the >> and << operators, respectively

› Remember: the arrows point in the way the data is “flowing”

› These aren’t like HTML tags or Java/C++ parentheses

() or curly braces {} in that they don’t need to “match”

Parameters

int main(){

int n = -5;

absoluteValue(n);

cout << "|-5| = " << n << endl;

return 0;

}

void absoluteValue(int n) {

if (n<0){

n = -n;

}

}

11

What is printed?

A. |-5| = 5

B. |-5| = -5

C. Other/none/more than

one of the above

"Pass by reference"

int main(){

int n = -5;

absoluteValue(n);

cout << "|-5| = " << n << endl;

return 0;

}

void absoluteValue(int& n) {

if (n<0){

n = -n;

}

}

12

What is printed?

A. |-5| = 5

B. |-5| = -5

C. Other/none/more than

one of the above

"Pass by value" (default behavior of parameters)

int main(){

int n = -5;

absoluteValue(n);

cout << "|-5| = " << n << endl;

return 0;

}

void absoluteValue(int n) {

if (n<0){

n = -n;

}

}

13

What is printed?

A. |-5| = 5

B. |-5| = -5

C. Other/none/more than

one of the above

Often used when you would want to return several values from a
function (but there is only one return value allowed)

#include "random.h"

void pickLotto(int& first, int& second, int& third);

int main(){

int first, second, third;

pickLotto(first, second, third);

cout << first << " " << second << " " << third << endl;

return 0;

}

void pickLotto(int& first, int& second, int& third) {

first = randomInteger(0,10);

second = randomInteger(0,10);

third = randomInteger(0,10);

}

14

Pass by reference

benefits of reference parameters:

 a useful way to be able to 'return' more than one value

 often used with large structures and objects, to avoid making bulky

copies when passing (more on this in next lectures)

downsides of reference parameters:

 hard to tell from call whether it is ref; can't tell if it will be changed

› foo(a, b, c); // will foo change a, b, or c?? :-/

 can't pass a literal value to a ref parameter

› grow(39); // error

Strings in C++

S T R I N G L I T E R A L V S

S T R I N G C L A S S

C O N C A T E N A T I O N

S T R I N G C L A S S M E T H O D S

Using cout and strings

int main(){

int n = absoluteValue(-5);

string s = "|-5|";

s += " = ";

cout << s << n << endl;

return 0;

}

int absoluteValue(int n) {

if (n<0){

n = -n;

}

return n;

}

17

• This prints |-5| = 5

• The + operator

concatenates strings,

and += works in the way

you’d expect.

Using cout and strings

int main(){

int n = absoluteValue(-5);

string s = "|-5|" + " = ";

cout << s << n << endl;

return 0;

}

int absoluteValue(int n) {

if (n<0){

n = -n;

}

return n;

}

18

But SURPRISE!…this one

doesn’t work.

C++ string objects and string literals

 In this class, we will interact with two types of strings:

› String literals are just hard-coded string values:

• "hello!" "1234" "#nailedit"

• They have no methods that do things for us

• Think of them like integer literals: you can’t do "4.add(5);" //no

› String objects are objects with lots of helpful methods and operators:

• string s;

• string piece = s.substr(0,3);

• s.append(t); //or, equivalently: s+= t;

String object member functions (3.2)

string name = "Donald Knuth";
if (name.find("Knu") != string::npos) {

name.erase(7, 5); // "Donald"
}

Member function name Description

s.append(str) add text to the end of a string

s.compare(str) return -1, 0, or 1 depending on relative ordering

s.erase(index, length) delete text from a string starting at given index

s.find(str)

s.rfind(str)

first or last index where the start of str appears in
this string (returns string::npos if not found)

s.insert(index, str) add text into a string at a given index

s.length() or s.size() number of characters in this string

s.replace(index, len, str) replaces len chars at given index with new text

s.substr(start, length) or
s.substr(start)

the next length characters beginning at start
(inclusive); if length omitted, grabs till end of string

Aside: Donald Knuth

Emeritus (i.e., retired)

faculty in our dept.

Legend of computer science

If you’re lucky, you’ll still see

him around campus from

time to time

Recap: C++ string objects and string literals

 Even though they are different types, you can mix them as long as there
is a string object around to be the "brains" of the operation:

› Yes:

• string s;
• s = "hello!" //string knows how to convert literal
• s = s + "1234"; //string has + defined as concatenation
• char ch = ‘A’; //a single ASCII character with ‘ not "
• s += ch; //string knows how to interact with char
• s += ‘A’; //and char literal

› No:

• "hello!" + " " + "bye!"; //literal not 'smart' enough to
//do concat with +

• "hello!".substr(0); //literal has no methods

Practice: C++ strings

int main(){

string s = "hello,";

s += "dolly!";

s += s + "why," + "hello,dolly!";

s.append("hello");

s.append("dolly!");

cout << s + '5' << endl;

cout << "hello" + '5' << endl;

return 0;

}

23

How many of these lines would
NOT compile?

A. 0

B. 1

C. 2

D. 3

E. More than 3

When discussing:

• Make sure you are not only
on how many but which

• Talk about the "why" for
each

Stanford library (3.7)

#include "strlib.h"

 Unlike the previous ones, these take the string as a parameter.

if (startsWith(name, "Mr.")) {
name += integerToString(age) + " years old";

}

Function name Description

endsWith(str, suffix)
startsWith(str, prefix)

returns true if the given string begins or ends with the
given prefix/suffix text

integerToString(int)
realToString(double)
stringToInteger(str)
stringToReal(str)

returns a conversion between numbers and strings

equalsIgnoreCase(s1, s2) true if s1 and s2 have same chars, ignoring casing

toLowerCase(str)
toUpperCase(str)

returns an upper/lowercase version of a string

trim(str) returns string with surrounding whitespace removed

