Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Today’s Topics

Introducing C++ from the Java Programmer’s Perspective
= firstprogram.cpp

» Function prototypes

» <iostream> and cout

» "simpio.h" and getLine()
= Absolute value example

» C++ strings and streams

Stanford University

C++ from the Java
Programmer’s
Perspective

(BUT IT'S OK IF YOU
DON'T KNOW JAVA!)

Stanford University

A first C++ program (Error)

#include <iostream>
#include "console.h"
using namespace std;

int main(){

cout << "|-5] = "
<< absoluteValue(-5)
<< endl;

return 0;

4

firstprogram.cpp

int absoluteValue(int n) {
if (n<0){
return -n;

}

return n;

Stanford University

5

A first C++ program (Fixed #1) firstprogram.cpp

#include <iostream>
#include "console.h" int main(){
using namespace std; cout << "|-5] = "
<< absoluteValue(-5)

int absoluteValue(int n) { << endl;

if (n<@){ return 0;

return -n; }

}

return n;
}

Stanford University

A first C++ program (Fixed #2)

6

firstprogram.cpp

#include <iostream>
#include "console.h"
using namespace std;

int absoluteValue(int n);

int main(){

cout << "|-5] = "
<< absoluteValue(-5)
<< endl;

return 0;

int absoluteValue(int n) {
if (n<0){
return -n;

}

return n;

Stanford University

Design Question: Why does C++ have the
function prototype syntax?

In other words, why not just have a rule that you must set up the
ordering so you define your functions before using them, as in
the "FIXED 1" example?

A. C++ could have done that, but such a rule would be too
cumbersome for programmers to follow.

B. C++ could have done that, but good programming style
dictates "top-down" approach that logically puts main() first
and helper functions it calls to follow.

C. C++ could not have done that, because sometimes there is
no way to order the functions so that all functions are
defined before being used.

D. Other/none/more than one of the above

Stanford University

Design Question: Why does C++ have the
function prototype syntax?

(A) and (B) The rationales behind choices (A)
and (B) (previous slide) are correct

> May or may not have been enough to
compel the language designers to introduce
the function prototype feature

(C) is true—there are cases where you simply
cannot rearrange the ordering of functions to
avoid all cases of use before definition

> e.g., mutual recursion

Stanford University

Which came first, the chicken or the egg?

(this code is just for fun, for now—we’ll cover recursion in depth in a few weeks!)

#include<iostream>
#include "console.h"
using namespace std;

void go(int n);
void stanford(int n);

int main(){
int n = 5;
go(n);
return 0;

void go(int n) {
if (n == @) return;
cout << "Go!" << endl;
stanford(n-1);

void stanford(int n) {
cout << "Stanford!" << endl;

go(n);

Stanford University

Go Stanford Modifications Code Demo:
What did we just see?

= You can read in input with:
> cin (<iostream>)
» getinteger(), getLine(), etc (“simpio.h”)

= You can use getLine() as a way of pausing the program to wait
for you to hit Enter before exiting (so you can see what
happened!)

» (depending on operating system and Qt configuration, may
not be necessary)

= cin and cout use the >> and << operators, respectively
» Remember: the arrows point in the way the data is “flowing”
» These aren'’t like HTML tags or Java/C++ parentheses
() or curly braces {} in that they don’t need to “match”

Stanford University

11

Parameters

int main(){ What is printed?

int n = -5;

absolutevalue(n); A |51 =5

cout << "|-5] = " << n << endl; B. [-5]=-5

return 0; C. Other/none/more than
} one of the above

void absoluteValue(int n) {
if (n<0){
n = -n;

Stanford University

"Pass by reference"

int main(){
int n = -5;
absoluteValue(n);
cout << "|-5] = " << n << endl;

return 0;
} |
void absoluteValue(int& n) {

if (n<0){
n = -n;

12

What is printed?
A. |-5] =5
B. |-5|=-5
C. Other/none/more than
one of the above

Stanford University

13

"Pass by value" (default behavior of parameters)

int main(){
int n = -5;
absoluteValue(n);
cout << "|-5] = " << n << endl;
return 0;

}

void absoluteValue(int n) {
if (n<0){
n = -n;

}

What is printed?
A. |-5]=5
B. |-5] =-5
C. Other/none/more than
one of the above

Stanford University

Often used when you would want to return several valués from a
function (but there is only one return value allowed)

#include "random.h"
void pickLotto(int& first, int& second, int& third);

int main(){
int first, second, third;
pickLotto(first, second, third);
cout << first << " " << second << " " << third << endl;

return 0;
} | |

void pickLotto(int& first, int& second, int& third) {
first = randomInteger(0,10);
second = randomInteger(0,10);
third = randomInteger(0,10);

} Stanford University

Pass by reference

benefits of reference parameters:
= a useful way to be able to 'return' more than one value

= often used with large structures and objects, to avoid making bulky
copies when passing (more on this in next lectures)

downsides of reference parameters:
= hard to tell from call whether it is ref; can't tell if it will be changed
» foo(a, b, c); // will foo change a, b, or c?? :-/

» can't pass a literal value to a ref parameter
> grow(39); // error

Stanford University

Strings in C++

STRING LITERAL VS
STRING CLASS

CONCATENATION
STRING CLASS METHODS

Stanford University

17

Using cout and strings

int main(){

int n = absoluteValue(-5);

string s = "|-5|";

s 4= " =" « This prints |-5] =5

cout << s << n << endl; + The + operator

return 0; concatenates strings,
} and += works in the way
int absoluteValue(int n) { you'd expect.

if (n<0){

n = -n;

}

return n;
}

Stanford University

18

Using cout and strings

int main(){
int n = absoluteValue(-5); But SURPRISE!...this one

string s = "|-5|" + " = "; doesn’t work.
cout << s << n << endl;

return 0;

int absoluteValue(int n) {
if (n<0){
n = -n;
}

return n;

Stanford University

C++ string objects and string literals

= In this class, we will interact with two types of strings:
» String literals are just hard-coded string values:
 "hello!"™ "1234" "#nailedit"
« They have no methods that do things for us
« Think of them like integer literals: you can't do "4.add(5);" //no

» String objects are objects with lots of helpful methods and operators:
e string s;
« string piece = s.substr(0,3);
 s.append(t); //or, equivalently: s+= t;

Stanford University

String object member functions (3.2)

Member function name Description
s.append(str) add text to the end of a string
s.compare(str) return -1, 0, or 1 depending on relative ordering
s.erase(index, Length) delete text from a string starting at given index
s.find(str) first or last index where the start of str appears in
s.rfind(str) this string (returns string: :npos if not found)
s.insert(index, str) add text into a string at a given index
s.length() or s.size() number of characters in this string
s.replace(index, Len, str) |replaceslen chars at givenindex with new text
s.substr(start, length) or |the next/ength characters beginning at start
s.substr(start) (inclusive); if length omitted, grabs till end of string
string name = "Donald Knuth";
if (name.find("Knu") != string::npos) {

name.erase(7, 5); // "Donald"
} Stanford University

Aside: Donald Knuth

Emeritus (i.e., retired)
faculty in our dept.

Legend of computer science

If you're lucky, you'll still see
him around campus from

time to time

Recap: C++ string objects and string literals

= Even though they are different types, you can mix them as long as there
IS a string object around to be the "brains" of the operation:

> Yes:
« string s;
e s = "hello!" //string knows how to convert literal

e s =5 + "1234"; //string has + defined as concatenation
e char ch = ‘A’; //a single ASCII character with ‘ not "

e s += ch; //string knows how to interact with char
e s += ‘A’; //and char literal
» No:
(S’"hello!" + " " + "byel"; //literal not 'smart’ enough to
//do concat with +
‘5’"hello!".substr(@); //1literal has no methods

Stanford University

23

Practice: C++ strings How many of these lines would

NOT compile?
A. 0

int main(){ B. 1

string s = "hello,"; C. 2

s += "dolly!"; D. 3

s += s + "why," + "hello,dolly!"; E. More than 3

s.append("hello");

s.append("dolly!"); When discussing:

cout << s + '5' << endl; - Make sure you are not only

cout << "hello" + '5' << endl; on how many but which

return 0; « Talk about the "why" for
} each

Stanford University

Stanford library (3.7)

#include "strlib.h"
= Unlike the previous ones, these take the string as a parameter.

Function name Description
endsWith(str, suffix) returns true if the given string begins or ends with the
startsWith(str, prefix) | given prefix/suffix text
integerToString(int) returns a conversion between numbers and strings
realToString(double)
stringToInteger(str)
stringToReal(str)
equalsIgnoreCase(sl, s2) |tryeifsland s2 have same chars, ignoring casing
toLowerCase(str) returns an upper/lowercase version of a string
toUpperCase(str)
trim(str) returns string with surrounding whitespace removed

if (startsWith(name, "Mr.")) {
name += integerToString(age) +
}

years old";

Stanford University

