
Programming Abstractions

Cynthia Lee

C S 106X

Today’s Topics

Introducing C++ from the Java Programmer’s Perspective

 Absolute value example, continued

› C++ strings and streams

ADTs: Abstract Data Types

 Introduction: What are ADTs?

 Queen safety example

› Grid data structure

› Passing objects by reference

• const reference parameters

› Loop over “neighbors” in a grid

Strings in C++

S T R I N G L I T E R A L V S

S T R I N G C L A S S

C O N C A T E N A T I O N

S T R I N G C L A S S M E T H O D S

Using cout and strings

int main(){

int n = absoluteValue(-5);

string s = "|-5|";

s += " = ";

cout << s << n << endl;

return 0;

}

int absoluteValue(int n) {

if (n<0){

n = -n;

}

return n;

}

4

• This prints |-5| = 5

• The + operator

concatenates strings,

and += works in the way

you’d expect.

Using cout and strings

int main(){

int n = absoluteValue(-5);

string s = "|-5|" + " = ";

cout << s << n << endl;

return 0;

}

int absoluteValue(int n) {

if (n<0){

n = -n;

}

return n;

}

5

But SURPRISE!…this one

doesn’t work.

C++ string objects and string literals

 In this class, we will interact with two types of strings:

› String literals are just hard-coded string values:

• "hello!" "1234" "#nailedit"

• They have no methods that do things for us

• Think of them like integer literals: you can’t do "4.add(5);" //no

› String objects are objects with lots of helpful methods and operators:

• string s;

• string piece = s.substr(0,3);

• s.append(t); //or, equivalently: s+= t;

String object member functions (3.2)

string name = "Donald Knuth";
if (name.find("Knu") != string::npos) {

name.erase(7, 5); // "Donald"
}

Member function name Description

s.append(str) add text to the end of a string

s.compare(str) return -1, 0, or 1 depending on relative ordering

s.erase(index, length) delete text from a string starting at given index

s.find(str)

s.rfind(str)

first or last index where the start of str appears in
this string (returns string::npos if not found)

s.insert(index, str) add text into a string at a given index

s.length() or s.size() number of characters in this string

s.replace(index, len, str) replaces len chars at given index with new text

s.substr(start, length) or
s.substr(start)

the next length characters beginning at start
(inclusive); if length omitted, grabs till end of string

Aside: Donald Knuth

Emeritus (i.e., retired)

faculty in our dept.

Legend of computer science

If you’re lucky, you’ll still see

him around campus from

time to time

Recap: C++ string objects and string literals

 Even though they are different types, you can mix them as long as there
is a string object around to be the "brains" of the operation:

› Yes:

• string s;
• s = "hello!" //string knows how to convert literal
• s = s + "1234"; //string has + defined as concatenation
• char ch = ‘A’; //a single ASCII character with ‘ not "
• s += ch; //string knows how to interact with char
• s += ‘A’; //and char literal

› No:

• "hello!" + " " + "bye!"; //literal not 'smart' enough to
//do concat with +

• "hello!".substr(0); //literal has no methods

Practice: C++ strings

int main(){

string s = "hello,";

s += "dolly!";

s += s + "why," + "hello,dolly!";

s.append("hello");

s.append("dolly!");

cout << s + '5' << endl;

cout << "hello" + '5' << endl;

return 0;

}

10

How many of these lines would
NOT compile?

A. 0

B. 1

C. 2

D. 3

E. More than 3

When discussing:

• Make sure you agree not
only on how many but which

• Talk about the "why" for
each

Stanford library (3.7)

#include "strlib.h"

 Unlike the previous ones, these take the string as a parameter.

if (startsWith(name, "Mr.")) {
name += integerToString(age) + " years old";

}

Function name Description

endsWith(str, suffix)
startsWith(str, prefix)

returns true if the given string begins or ends with the
given prefix/suffix text

integerToString(int)
realToString(double)
stringToInteger(str)
stringToReal(str)

returns a conversion between numbers and strings

equalsIgnoreCase(s1, s2) true if s1 and s2 have same chars, ignoring casing

toLowerCase(str)
toUpperCase(str)

returns an upper/lowercase version of a string

trim(str) returns string with surrounding whitespace removed

ADTs

V E C T O R , G R I D , S T A C K

ADTs

 Programming language independent models of

common containers

 They encompass not only the nature of the data, but

ways of accessing it

 They form a rich vocabulary of nouns and verbs,

often drawing on analogies to make their use

intuitive, and to give code written in them a certain

literary quality

"Hope" is the thing with feathers
BY EMILY DICKENSON

“Hope” is the thing with feathers -
That perches in the soul -
And sings the tune without the words -
And never stops - at all -

And sweetest - in the Gale - is heard -
And sore must be the storm -
That could abash the little Bird
That kept so many warm -

I’ve heard it in the chillest land -
And on the strangest Sea -
Yet - never - in Extremity,
It asked a crumb - of me.

Vector

 ADT abstraction similar to an array

 Many languages have a version of this

› (remember, ADTs are conceptual abstractions that are language-

independent)

 In C++ we declare one like this:

 This syntax is called template syntax

› Vectors can hold many things, but they all have to be the same type

› The type goes in the < > after the class name Vector

• Vector<int> assignment3Scores;

• Vector<double> measurementsData;

• Vector<Vector<int>> allAssignmentScores;

Vector<string> lines;

Code example: Queen safety

Download full code from the website to see an
example of what we consider good coding style for
your assignment!

Handy loop idiom: iterating over “neighbors” in a Grid

static bool isSafe(Grid<bool>& board, int row, int col) {

for (int drow = -1; drow <= 1; drow++) {

for (int dcol = -1; dcol <= 1; dcol++) {

if (!isDirectionSafe(board, row, col, drow, dcol)) {

return false;

}

}

}

return true;

}

These nested for loops generate all the pairs in the cross product {-1,0,1} x {-1,0,1}, and we

can add these as offsets to a (row,col) coordinate to generate all the neighbors (note: often

want to test for and exclude the (0,0) offset, which is “self” not a neighbor)

R -1

C -1

R -1

C +0

R -1

C +1

R +0

C -1

R +0

C +0

R +0

C +1

R +1

C -1

R +1

C +0

R +1

C +1

QT Creator

A F E W W A R N I N G S & T I P S

If your code doesn’t compile and gives an error about
unknown function Main() (note capital M):

 There is more than one reason
this could arise, but the most
common by far is that QT lost its
ability to find the path to our
Stanford library includes (which
define a fake Main()), because you
put your code in a directory/folder
that is deeply nested on your
drive.

 For example, C:\Documents and
Settings\Documents\classes\Stanf
ord\2015\Summer\CS106B\assign
ments\C++\Assignment1\...

 You need to move the
assignment directory closer to
C:\ (or on mac, the root
directory)

If your code doesn’t compile and gives you “multiple
definition” errors for all the functions you have:

 This can arise if you add new files to your code inside QT creator using

its handy “Add New…” feature.

 NOT HANDY! Do not use this feature. It breaks the .pro file.

If it’s too late and you already used the “Add New” feature

1. QUIT: Close QT Creator

2. CLEAN UP BROKEN FILES: Delete the .pro and .pro.user files in your

code directory; delete the entire build directory (this is an automatically

created directory that appears alongside the directory where your code

is, it’s name is something like “build-simple-project-

Desktop_Qt_5_2_0_MinGW_32bit-Debug”)

3. GRAB REPLACEMENT: Download/unzip the assignment bundle again,

and get a fresh copy of the project file (the one that ends in .pro) and

put it in place of the one you deleted.

4. ALL BETTER! Re-open QT Creator (it will make a new .pro.user)

