
Programming Abstractions

Cynthia Lee

C S 106X

Today’s Topics

ADTs

 Map

› Example: counting words in text

 Containers within containers

› Example: reference tests

› Example: anagram finder

Map

W H A T A R E T H E Y ?

E X A M P L E A P P L I C A T I O N

Associative containers

• Map

• Set

• Lexicon

Not as concerned with order but with matching

 Set: associates keys with membership (yes or no)

 Map: associates keys with values (could be any type)

set

"the" "of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if" "Cynthia"

"Mehran"

"Marty" "497-3070"

"555-0000"

"867-5309"

map

Stanford library Map (selected member functions)

template <typename KeyType, typename ValueType> class Map {
public:

void add(const KeyType& key, const ValueType& value);

bool containsKey(const KeyType& key) const;

ValueType get(const KeyType& key) const;

ValueType operator [](const KeyType& key) const;
...
}

Map programming exercise

Write a program to count the number of occurrences of each unique word in a
text file (e.g. Poker by Zora Neale Hurston).

 Report all words that appeared in the book at least 10 times, in alphabetical
order

 Allow the user to type a word and report how many times that word appeared
in the book

What would be a good design for this problem?

A. Map<int, string> wordCounts;

B. Map<string, Vector<string>> wordCounts;

C. Map<string, int> wordCounts;

D. Map<string, Vector<int>> wordCounts;

E. Other/none/more

6

Write a program to count the number of occurrences of each unique word in a

text file (e.g. Poker by Zora Neale Hurston).

7

Map<string,int> wordCounts;
string word;
infile >> word;
while (!infile.fail()){

//record count here
infile >> word;

}

How can we record the count?
A. wordCounts[word]+=word;
B. wordCounts[word]+=1;
C. wordCounts[word]++;
D. B and C are good, but you need to

first detect new (never seen

before) words so you can start at

zero before you start adding +1

E. Other/none/more

Write a program to count the number of occurrences of each unique word in a

text file (e.g. Poker by Zora Neale Hurston).

 Report all words that appeared in the book at least 10 times, in alphabetical

order

8

Does this work for our alphabetical use case?

 Yes!

 Stanford library Map returns its keys in sorted order

cout << “Most common words:" << endl;
for (string word : wordCounts){

if (wordCounts[word] >= 10){
cout << word << "\t“;
cout << wordCounts[word] << endl;

}
}

New (C++11) useful

tool!

for loop that iterates

over all elements of

a container class

Compound Containers

I T ’ S T U R T L E S A L L T H E

W A Y D O W N …

Compound containers

Predict the outcome:

(A) 3 (B) 4 (C) other # (D) Error

Map<string,Vector<int>> mymap;

Vector<int> numbers;
numbers.add(1);
numbers.add(2);
numbers.add(3);

mymap["123"] = numbers;
Vector<int> test = mymap["123"];
test.add(4);
cout << “New size: " << mymap["123"].size() << endl;

Compound containers

Predict the outcome:

(A) 3 (B) 4 (C) other # (D) Error

Map<string,Vector<int>> mymap;

Vector<int> numbers;
numbers.add(1);
numbers.add(2);
numbers.add(3);

mymap["123"] = numbers;
mymap["123"].add(4);
cout << “New size: " << mymap["123"].size() << endl;

C++ bonus details:

This works by returning a reference (!)

C++ also allows you to define a return type to be a

reference

Gives you a reference to the item being returned

In the case of map, this returns a reference to the value

at map[key]:

ValueType & operator[](const KeyType & key);

Stanford library Map (selected member functions)

template <typename KeyType, typename ValueType> class Map {
public:

void add(const KeyType& key, const ValueType& value);

bool containsKey(const KeyType& key) const;

ValueType get(const KeyType& key) const;

ValueType operator [](const KeyType& key) const;

ValueType& operator [](const KeyType& key);
...
private:

}

Redacted…until the second half of the

quarter!

Returning a reference

Predict the outcome:

(A) 3 (B) 4 (C) other # (D) Error

Map<string,Vector<int>> mymap;

Vector<int> numbers;
numbers.add(1);
numbers.add(2);
numbers.add(3);

mymap["123"] = numbers;

Vector<int>& referenceTest = mymap["123"];
referenceTest.add(4);

cout << “New size: " << mymap["123"].size() <<
endl;

Anagram Finder

A N A P P L I C A T I O N O F

C O M P O U N D M A P

“Abstractions”

Bacon artists

Cab stain rots

Crab in toasts

Bonsai tracts

…

http://www.wordsmith.org/anagram/

http://www.wordsmith.org/anagram/

What would be a good design for this problem?

Concept:

 Unlike the website, we will only show anagrams that are 1 word ↔ 1
word (“moored” ↔ “roomed”, not “abstractions” ↔ “bacon artists”)

 Have a string that is a “representative” of a group of words that are
anagrams of each other

 Have that string map to a list of those words

 Map<string, Vector<string>> anagrams;

 Key trick idea: the representative is the string with the letters sorted (use
a function “string sortWord(string word);”)

› moored becomes demoor

› roomed becomes demoor

What would be a good design for this problem?

Concept:

 Map<string, Vector<string>> anagrams;

How would we add a word stored in the string variable word to our

collection?

A. anagrams[word]+=word;

B. anagrams[word]+=sortWord(word);

C. anagrams[sortWord(word)]+=word;

D. anagrams[sortWord(word)]+=sortWord(word);

E. Other/none/more

What would be a good design for this problem?

Concept:

 Map<string, Vector<string>> anagrams;

To add a word to our collection:

anagrams[sortWord(word)]+=word;

To look up a word in our collection to find its anagrams:

Vector<string> matches = anagrams[sortWord(query)];

