Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Today’s Topics

ADTs
= Map

» Example: counting words in text
= Containers within containers

» Example: reference tests

> Example: anagram finder

Stanford University

Map

WHAT ARE THEY?
EXAMPLE APPLICATION

Stanford University

Associative containers

« Map
e Set "867-5309"
« Lexicon

"555-0000"

"'497-3070"

set

Not as concerned with order but with matching
= Set: associates keys with membership (yes or no)
= Map: associates keys with values (could be any type)

Stanford University

Stanford library Map (selected member functions)

template <typename KeyType, typename ValueType> clasf i
public:
void add(const KeyType& key, const ValueType& valt —

bool containsKey(const KeyType& key) const;

ValueType getfconst KeyType& ke const;
ype g yTyp y)) const
ValueType operator [](const KeyType& key) Qgifig::>

Stanford University

Map programming exercise

Write a program to count the number of occurrences of each unique word in a
text file (e.g. Poker by Zora Neale Hurston).

= Report all words that appeared in the book at least 10 times, in alphabetical

order .
-@Me user to Lypemrt how many times that word appeared

in the book

What would be a good design for this problem?
A. Map<int, string> wordCounts;
__B-Ma ing, Vector<string>> wordCounts;
S.—Map<string, int> wordCounts;
. Me ing, Vector<int>> wordCounts;
E. Other/none/more

Stanford University

Write a program to count the number of occurrences of each unique word in a
text file (e.g. Poker by Zora Neale Hurston).

@ing,inb @ounts;

string word;
infile >> word;

How can we record the count?
A. wordCounts[word]+=wonrd;

B. wordCoun ord]+=1; L while (linfile.fail()){
wordCounts[word]++; —— —<9//record count here
. B and C are good, but you need to infile >> word;
first detect new (never seen }

before) words so you can start at
zero before you start adding +1

E. Other/none/more y "\ =D
e L hellz) =107

Stanford University

Write a program to count the number of occurrences of each unique word in a

text file (e.g. Poker by Zora Neale Hurston).

= Report all words that appeared in the book at least 10 times, in_alphabetical

order

: cout << “Most common words:" << endl;
for (string word : wor‘dCounts){h
if (wordCounts[word] >= 10){
cout << word << [\t*
cout << wordCounts[word] << endl;

New (C++11) useful
tool!

for loop that iterates
over all elements of
a container class

}

Does this work for our alphabetical use case?

= Yes!
» Stanford library Map returns its keys in sorted order

Stanford University

Compound Containers

IT'S TURTLES ALL THE
WAY DOWN ...

Stanford University

Compound containers

Map<string,Vector<int>> mymap;

Vector<int> numbers;
numbers.add(1);
numbers.add(2);
numbers.add(3);

mymap[“123"] = numbers;
Vector<int> test = mymap["123"];
test.add(4);

cout << “New size:

<< mymap["123"].size() << endl;

Predict the outcome:
(A) 3 (B) 4 (C) other # (D) Error

Stanford University

Compound containers

Map<string,Vector<int>> mymap;

Vector<int> numbers;
numbers.add(1);
numbers.add(2);
numbers.add(3);

mymap[“123"] = numbers;
mymap[“123"].add(4);
cout << “New size: " << mymap["123"].size() << endl;

Predict the outcome:
(A) 3 (B) 4 (C) other # (D) Error

Stanford University

C++ bonus details:

This works by returning a reference (!)

C++ also allows you to define a return type to be a
reference

Gives you a reference to the item being returned

In the case of map, this returns a reference to the value
at map[key]:

ValueType & operator[](const KeyType & key);

Stanford University

Stanford library Map (selected member functions)

template <typename KeyType, typename ValueType> class Map {
public:
void add(const KeyType& key, const ValueType& value);
bool containsKey(const KeyType& key) const;
ValueType get(const KeyType& key) const;
ValueType operator [](const KeyType& key) const;
ValueType& operator [](const KeyType& key);
private:

Redacted...until the second half of the

quarter!

} Stanford University

Returning a reference

Map<string,Vector<int>> mymap;

Vector<int> numbers;
numbers.add(1);
numbers.add(2);
numbers.add(3);

mymap["123"] = numbers;

Vector<int>& referenceTest = mymap["123"];
referenceTest.add(4);

cout << “New size: "
endl;

<< mymap["123"].size() <<

Predict the outcome:
(A) 3 (B) 4 (C) other # (D) Error

Stanford University

Anagram Finder

AN APPLICATION OF
COMPOUND MAP

Stanford University

“Abstractions”

Bacon artists
Cab stain rots
Crab in toasts
Bonsai tracts

http://www.wordsmith.org/anagram/

Stanford University

http://www.wordsmith.org/anagram/

What would be a good design for this problem?

Concept:

= Unlike the website, we will only show anagrams that are 1 word < 1
word (“moored” < “roomed”, not “abstractions” <« “bacon artists”)

= Have a string that is a “representative” of a group of words that are
anagrams of each other

= Have that string map to a list of those words
= Map<string, Vector<string>> anagrams;

= Key trick idea: the representative is the string with the letters sorted (use
a function “string sortWord(string word);")

» moored becomes demoor
» roomed becomes demoor

Stanford University

What would be a good design for this problem?

Concept:

Map<string, Vector<string>> anagrams;

How would we add a word stored in the string variable word to our
collection?

A

. anagrams[word]+=wonrd;
B.

anagrams[word]+=sortWord(word) ;

C. anagrams[sortWord(word) J+=word;
D.
E

anagrams|[sortWord(word) J+=sortWord(word) ;
. Other/none/more

Stanford University

What would be a good design for this problem?

Concept:
= Map<string, Vector<string>> anagrams;

To add a word to our collection:
anagrams[sortWord(word)]+=word;
To look up a word in our collection to find its anagrams:

Vector<string> matches = anagrams[sortWord(query)];

Stanford University

