Programming Abstractions
CS106B

Cynthia Lee

Stanford University

Recursion!

The exclamation point isn’t there only because this is so exciting, it also
relates to one of our recursion examples....

Stanford University

Recursion

Cynthia Bailey Lee

Timeline About Photos Friends More «

Stanford University

Factorial!

Recursive mathematical definition

n! =

e ifnisl,thenn!=1

e ifn>1,thenn!=n*(n-1)!

» (0!'=1 but for simplicity we’'ll just consider the domain n>0 for today)

Recursive code

Stanford University

Designing a recursive algorithm

Recursion is a way of taking a big problem and repeatedly breaking it
into smaller and smaller pieces until it is so small that it can be so
easily solved that it almost doesn't even need solving.

There are two parts of a recursive algorithm:

> base case: where we identify that the problem is so small that we
trivially solve it and return that result

» recursive case: where we see that the problem is still a bit too big for
our taste, so we chop it into smaller bits and call our self (the function
we are in now) on the smaller bits to find out the answer to the
problem we face

Stanford University

Factorial!

Recursive definition

n! =
e ifnisl,thennl=1
e ifn>1,thenn!=n*(n-1)!

Recursive code

long factorial (int n) {
if (n==1) return 1;
else return n*factorial(n-1);

Stanford University

Factorial!

Recursive definition

n! =
e ifnisl,thenn!=1
e ifn>1,thenn!=n*(n-1)!

Recursive code: imagining more concrete examaples

long factorialOofé () {
return 6 * factorialOf5();

long factorialOf5() {
return 120;

Stanford University

Factorial!

Recursive definition

n! =
e ifnisl,thenn!=1
e ifn>1,thenn!=n*(n-1)!

Recursive code: imagining more concrete examaples

long factorial (int n) {
if (n==1) return 1;
else {
int nminuslfact = pretendIJustMagicallyKnowFactorialOfThis(n-1);
return n*nminuslfact;

Stanford University

Factorial!

Recursive definition

n! =
e ifnisl,thennl=1
e ifn>1,thenn!=n*(n-1)!

Recursive code

long factorial (int n) {
if (n==1) return 1;
else {
int nminuslfact = factorial(n-1);
return n*nminuslfact;

Stanford University

Factorial!

Recursive definition

n! =
e ifnisl,thennl=1
e ifn>1,thenn!=n*(n-1)!

Recursive code

long factorial (int n) {
if (n==1) return 1;
else return n*factorial(n-1);

Stanford University

Factorial!

Recursive definition Recursive code

nl = long factorial (int n) {
' if (n==1) return 1;

i i | =
ifnis1, thenn!=1 else return n*factorial(n-1);

ifn>1,thennl=n*(n-1)!

Pro tip: the recursive “leap of faith”

This concept has become part of the mythology of Stanford’s
CS106B/X classes. It speaks to the idea that recursion will start to
make sense to you when you just trust that the recursive part works.
One way of tricking your brain into summoning this trust is
Imagining that the recursive call instead calls some different (non-

recursive) function that calculates the same thing, like we did at first
for factorial().

Stanford University

Digging deeper In the recursion

| know | just told you about the recursive leap of faith and that, for algorithm
design purposes, you should mentally flatten the recursion. But before we
put that tip into practice, it helps to orient ourselves to the full complexity.

Stanford University

Factorial!

Recursive definition

n! =
e ifnisl,thennl=1
e ifn>1,thenn!=n*(n-1)!

What is the third thing
printed when we call
factorial(10)?

A. 2

B. 3

C. 7

D. 8

E. Other/none/more

Recursive code

long factorial (int n) {
cout << n << endl; //added code
if (n==1) return 1;
else return n*factorial(n-1);

Stanford University

How does this look in memory?

Memory

Stack

Heap

Stanford University

How does this look in memory?

Memory

main()
myfunction() x: | 10
xfac: | o
factorial() n: | 10

Heap

Recursive code

long factorial (int n) {
cout << n << endl;
if (n==1) return 1;

else return n*factorial(n-1);

}

void myfunction(){
int x = 10;
long xfac = 0;

xfac

factorial(x);

Stanford University

(A)

(B) (C)
Memory Memory Memory
main() main() main()
myfunction() x: |10 || fmyfunction() x: [10]] | myfunction) x: |10
xfac: | 0 xfac: | 0 xfac: | 0o
factorial) n: |10 factorial) n: |9 factorial() n: |9 [10
factorial() n: |9

Heap

Heap

Heap

(D) Other/none of the above

Stanford University

The “stack” part of memory is a stack

Function call = push
Return = pop

Stanford University

The “stack” part of memory is a stack

main() Recursive code
long factorial (int n) {
. " 4
myfunCtlon()f X'_ cout << n << endl;
xiac- 1 0 if (n==1) return 1;
factorial() n |4 else return n*factorial(n-1);

void myfunction(){
int x = 4; //smaller test case
long xfac = 0;
xfac = factorial(x);

Heap

Stanford University

The “stack” part of memory is a stack

main() Recursive code
. long factorial (int n) {
QEEsICtion() X:_ = cout << n << endl;
g0 if (n==1) return 1;
factorial() n |4 else return n*factorial(n-1);
: }
factorial() n: |3

void myfunction(){
int x = 4;
long xfac = 0;
xfac = factorial(x);

Heap

Stanford University

The “stack” part of memory is a stack

main() Recursive code
. long factorial (int n) {
- |14
myfunCtlon())(fa)((:.. cout << n << endl;
-1 0 if (n==1) return 1;
factorial() n |4 else return n*factorial(n-1);
. }
factorial() n: |3
factorial() n |2 void myfunction(){

int x = 4;
long xfac = 0;
xfac = factorial(x);

Heap

Stanford University

The “stack” part of memory is a stack

main()

myfunction() x:

xfac:

oh

factorial() n:

factorial() n:

factorial() n:

factorial() n:

RIIN[W]] P&

Heap

Recursive code
long factorial (int n) {
cout << n << endl;
if (n==1) return 1;
else return n*factorial(n-1);

}

void myfunction(){
int x = 4;
long xfac = 0;
xfac = factorial(x);

Stanford University

Factorial!

Recursive definition Recursive code

nl = long factorial (int n) {
cout << n << endl;
if (n==1) return 1;
else return n*factorial(n-1);

e ifnisl,thennl=1
e ifn>1,thenn!=n*(n-1)!

What is the fourth value ever
returned when we call
factorial(10)?

A 4

B. 6

C. 10

D. 24

E. Other/none/more than one

Stanford University

The “stack” part of memory is a stack

main() Recursive code

myfunction() x: 4 long factorial (int n) {

xfac: 0 cout << n << endl;

if (n==1) return 1;
factorial() n: [4 else return n*factorial(n-1);
factorial) n: |3 }
factorial() n: |2 void myfunction(){
_ int x = 4;

factorial) n: |1 long xfac = 0

Return 1 g
xfac = factorial(x);

Stanford University

The “stack” part of memory is a stack

main() Recursive code
myfunction() x: 4 long factorial (int n) {
xfac: 0 cout << n << endl;
if (n==1) return 1;
factorial() n: [4 else return n*factorial(n-1);
factorial) n: |3 }
factorial() n: |2 Retypn o Void myfunction(){

int x = 4;
long xfac = 0;
xfac = factorial(x);

Stanford University

The “stack” part of memory is a stack

=g Recursive code
myfunction() x: 4 long factorial (int n) {
xfac: | o cout << n << endl;
if (n==1) return 1;
factorial() n: |4 else return n*factorial(n-1);
factorial) n: |3 }

Return 6

void myfunction(){
int x = 4;
long xfac = 0;
xfac = factorial(x);

Stanford University

The “stack” part of memory is a stack

main() Recursive code
myfunction() x: 4 long factorial (int n) {
xfac: | o cout << n << endl;
if (n==1) return 1;
factorial() n: |4 else return n*factorial(n-1);
Return 24 }

void myfunction(){
int x = 4;
long xfac = 0;
xfac = factorial(x);

Stanford University

Factorial!

Ilterative version

long factorial(int n)

{

Recursive version

long factorial (int n) {
cout << n << endl;

lo?g f=1; if (n==1) return 1;
Whilf i : ;_1) 4 else return n*factorial(n-1);
- 3
n=n-1; }
}
return f;
} NOTE: sometimes iterative can be much faster

because it doesn’t have to push and pop stack
frames. Function calls have overhead in terms
of space and time to set up and tear down.

Stanford University

Announcement: Recursive art contest!

= Go to http://recursivedrawing.com/
= Make recursive art
» Win prizes!
= Come to my office hours and see my Wall of Fame of past recursive art
submissions!
= Submission deadline:
» Wednesday of Week 4 (October 14)
= Submission procedure:
» Email me: cbl@stanford.edu

Stanford University

http://recursivedrawing.com/

Art contest

Catherine Wong
Autumn 2013

Stanford University

Classic CS problem: searching

Stanford University

Imagine storing sorted data in an array

How long does it take us to find a number we are
looking for?

EI-----E-EE

13 25 29 33 51 89 90 95

Stanford University

Imagine storing sorted data in an array

How long does it take us to find a number we are
looking for?

EI-----E-EE

13 25 29 33 51 89 90 95

If you start at the front and proceed forward, each
item you examine rules out 1 item

Stanford University

Imagine storing sorted data in an array

ﬂ---- 6 17 (8 |9 110

13 25 29 33 51 89 90 95

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far
3. We realize we didn’t go far enough

Stanford University

Imagine storing sorted data in an array

ﬂ---- 6 17 (8 |9 110

13 25 29 33 51 89 90 95

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far
3. We realize we didn’t go far enough

Ruling out HALF the options in one step is so
much faster than only ruling out one!

Stanford University

Binary search
EI-----E-EEI

13 25 29 33 51 89 90 95

Let’s say the answer was 3, “we didn’t go far enough”

We ruled out the entire first half, and now only have the
second half to search

We could start at the front of the second half and proceed
forward...

Stanford University

Binary search

ﬂ-----ﬂ- 910

13 25 29 33 51 89 90 95

Let’s say the answer was 3, “we didn’t go far
enough”

We ruled out the entire first half, and now only have
the second half to search

We could start at the front of the second half and
proceed forward...but why do that when we know

we have a better way?
Jump right to the middle of the region to search

Stanford University

Binary search

EI-----E- 910

13 25 29 33 51 89 90 95

We could I acond half and

Jump . Y e of the region to search

Stanford University

Designing a recursive algorithm

Recursion is a way of taking a big problem and repeatedly breaking it
into smaller and smaller pieces until it is so small that it can be so
easily solved that it almost doesn't even need solving.

There are two parts of a recursive algorithm:

> base case: where we identify that the problem is so small that we
trivially solve it and return that result

» recursive case: where we see that the problem is still a bit too big for
our taste, so we chop it into smaller bits and call our self (the function
we are in now) on the smaller bits to find out the answer to the
problem we face

Stanford University

To write a recursive function, we need base
case(s) and recursive call(s)

What would be a good base case for our Binary
Search function?

A. Only three items remain: save yourself an
unnecessary function call that would trivially divide
them into halves of size 1, and just check all three.

B. Only two items remain: can’t divide into two halves
with a middle, so just check the two.

Only one item remains: just check it.
No items remain: obviously we didn’t find it.
More than one

mo o

Stanford University

Binary Search
bool binarySearch(Vector<int>& data, int key){

return binarySearch(data, key, 0, data.size()-1);

bool binarySearch(Vector<int>& data, int key,
int start, int end){

//to be continued..

Stanford University

