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Recursion!
The exclamation point isn’t there only because this is so exciting, it also 

relates to one of our recursion examples….



Recursion



Factorial!

Recursive mathematical definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)!

• (0!=1 but for simplicity we’ll just consider the domain n>0 for today)

Recursive code



Designing a recursive algorithm

 Recursion is a way of taking a big problem and repeatedly breaking it 

into smaller and smaller pieces until it is so small that it can be so 

easily solved that it almost doesn't even need solving.

 There are two parts of a recursive algorithm:

› base case: where we identify that the problem is so small that we 

trivially solve it and return that result

› recursive case: where we see that the problem is still a bit too big for 

our taste, so we chop it into smaller bits and call our self (the function 

we are in now) on the smaller bits to find out the answer to the 

problem we face
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Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

Recursive code

long factorial ( int n ) { 

if (n==1) return 1;

else return n*factorial(n-1);

}



Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

Recursive code: imagining more concrete examaples

long factorialOf6 () { 

return 6 * factorialOf5();

}

long factorialOf5() {

return 120;

}



Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

long factorial ( int n ) { 

if (n==1) return 1;

else {

int nminus1fact = pretendIJustMagicallyKnowFactorialOfThis(n-1);

return n*nminus1fact;

}

}

Recursive code: imagining more concrete examaples



Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

Recursive code

long factorial ( int n ) { 

if (n==1) return 1;

else {

int nminus1fact = factorial(n-1);

return n*nminus1fact;

}

}



Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

Recursive code

long factorial ( int n ) { 

if (n==1) return 1;

else return n*factorial(n-1);

}



Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

Recursive code

long factorial ( int n ) {

if (n==1) return 1;

else return n*factorial(n–1);

}

Pro tip: the recursive “leap of faith”

 This concept has become part of the mythology of Stanford’s 

CS106B/X classes. It speaks to the idea that recursion will start to 

make sense to you when you just trust that the recursive part works. 

 One way of tricking your brain into summoning this trust is 

imagining that the recursive call instead calls some different (non-

recursive) function that calculates the same thing, like we did at first 

for factorial().



Digging deeper in the recursion
I know I just told you about the recursive leap of faith and that, for algorithm 

design purposes, you should mentally flatten the recursion. But before we 

put that tip into practice, it helps to orient ourselves to the full complexity. 
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Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

Recursive code

long factorial ( int n ) {

cout << n << endl; //added code 

if (n==1) return 1;

else return n*factorial(n–1);

}

What is the third thing 

printed when we call 

factorial(10)?

A. 2

B. 3

C. 7

D. 8

E. Other/none/more



How does this look in memory?

Memory

Heap

Stack

0



How does this look in memory?

Memory Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 10;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()    x:

xfac:   

factorial()         n: 10

0

10

0



Memory

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 10

10

0

factorial()        n: 9

Memory

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 9

10

0

Memory

main()

Heap

myfunction()   x:

xfac: 

factorial()  n: 10

10

0
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(A) (B) (C)

(D) Other/none of the above



The “stack” part of memory is a stack
Function call = push

Return = pop



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;  //smaller test case

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0

factorial()        n: 3



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0

factorial()        n: 3

factorial()        n: 2



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0

factorial()        n: 3

factorial()        n: 2

factorial()        n: 1



Factorial!

Recursive definition

n!   = 

• if n is 1, then n! = 1 

• if n > 1, then n! = n * (n – 1)! 

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

What is the fourth value ever 

returned when we call 

factorial(10)? 

A. 4

B. 6

C. 10

D. 24

E. Other/none/more than one



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0

factorial()        n: 3

factorial()        n: 2

factorial()        n: 1
Return 1



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0

factorial()        n: 3

factorial()        n: 2
Return 2



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0

factorial()        n: 3
Return 6



The “stack” part of memory is a stack

Recursive code

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

void myfunction(){

int x = 4;

long xfac = 0;

xfac = factorial(x);

}

main()

Heap

myfunction()   x:

xfac: 

factorial()        n: 4

4

0

Return 24



Factorial! 

Iterative version

long factorial(int n) 

{ 

long f = 1; 

while ( n > 1 ) { 

f = f * n; 

n = n – 1; 

} 

return f;

}

Recursive version

long factorial ( int n ) {

cout << n << endl; 

if (n==1) return 1;

else return n*factorial(n–1);

}

NOTE: sometimes iterative can be much faster
because it doesn’t have to push and pop stack 
frames. Function calls have overhead in terms 
of space and time to set up and tear down.



Announcement: Recursive art contest!

 Go to http://recursivedrawing.com/

 Make recursive art

› Win prizes!

 Come to my office hours and see my Wall of Fame of past recursive art 

submissions!

 Submission deadline: 

› Wednesday of Week 4 (October 14)

 Submission procedure:

› Email me: cbl@stanford.edu
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Wall of Fame



Classic CS problem: searching



Imagine storing sorted data in an array

How long does it take us to find a number we are 

looking for?

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Imagine storing sorted data in an array

How long does it take us to find a number we are 

looking for?

If you start at the front and proceed forward, each 

item you examine rules out 1 item

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Imagine storing sorted data in an array

If instead we jump right to the middle, one of three 

things can happen:

1. The middle one happens to be the number we 

were looking for, yay!

2. We realize we went too far

3. We realize we didn’t go far enough

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Imagine storing sorted data in an array

If instead we jump right to the middle, one of three 
things can happen:

1. The middle one happens to be the number we 
were looking for, yay!

2. We realize we went too far

3. We realize we didn’t go far enough

Ruling out HALF the options in one step is so 
much faster than only ruling out one!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Binary search

Let’s say the answer was 3, “we didn’t go far enough”

We ruled out the entire first half, and now only have the 

second half to search

We could start at the front of the second half and proceed 

forward…

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Binary search

Let’s say the answer was 3, “we didn’t go far 
enough”

We ruled out the entire first half, and now only have 
the second half to search

We could start at the front of the second half and 
proceed forward…but why do that when we know 
we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Binary search

Let’s say the answer was 3, “we didn’t go far 
enough”

We ruled out the entire first half, and now only have 
the second half to search

We could start at the front of the second half and 
proceed forward…but why do that when we know 
we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

RECURSION!!



Designing a recursive algorithm

 Recursion is a way of taking a big problem and repeatedly breaking it 

into smaller and smaller pieces until it is so small that it can be so 

easily solved that it almost doesn't even need solving.

 There are two parts of a recursive algorithm:

› base case: where we identify that the problem is so small that we 

trivially solve it and return that result

› recursive case: where we see that the problem is still a bit too big for 

our taste, so we chop it into smaller bits and call our self (the function 

we are in now) on the smaller bits to find out the answer to the 

problem we face
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To write a recursive function, we need base 
case(s) and recursive call(s)

What would be a good base case for our Binary 

Search function?

A. Only three items remain: save yourself an 

unnecessary function call that would trivially divide 

them into halves of size 1, and just check all three.

B. Only two items remain: can’t divide into two halves 

with a middle, so just check the two.

C. Only one item remains: just check it.

D. No items remain: obviously we didn’t find it.

E. More than one



Binary Search
bool binarySearch(Vector<int>& data, int key){

return binarySearch(data, key, 0, data.size()-1);

}

bool binarySearch(Vector<int>& data, int key, 

int start, int end){

//to be continued…

}


