Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Recursion!

The exclamation point isn’t there only because this is so exciting, it also
relates to one of our recursion examples....

Stanford University

Announcement: Recursive art contest!

= Go to http://recursivedrawing.com/
= Make recursive art
> Win prizes!
= Come to my office hours and see my Wall of Fame of past recursive art
submissions!
» Submission deadline:
» Wednesday of Week 4 (October 14)
= Submission procedure:
» Email me: cbl@stanford.edu

Stanford University

http://recursivedrawing.com/

Art contest

Catherine Wong
Autumn 2013

Stanford University

Wall of Fame

Classic CS problem: searching

Stanford University

Imagine storing sorted data in an array

How long does it take us to find a number we are
looking for?

ﬂ-----ﬂ-ﬂﬂ

13 25 29 33 51 89 90 95

Stanford University

Imagine storing sorted data in an array

How long does it take us to find a number we are
looking for?

ﬂ-----ﬂ-ﬂﬂ

13 25 29 33 51 89 90 95

If you start at the front and proceed forward, each
item you examine rules out 1 item

Stanford University

Imagine storing sorted data in an array

ﬂ---- 6 17 (8 |9 110

13 25 29 33 51 89 90 95

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far
3. We realize we didn’t go far enough

Stanford University

Imagine storing sorted data in an array

ﬂ---- 6 17 (8 |9 110

13 25 29 33 51 89 90 95

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far
3. We realize we didn’t go far enough

Ruling out HALF the options in one step is so
much faster than only ruling out one!

Stanford University

Binary search

ﬂ-----ﬂ-ﬂﬂ

13 25 29 33 51 89 90 95

Let’s say the answer was case 3, “we didn’t go far enough”

* We ruled out the entire first half, and now only have the
second half to search

« We could start at the front of the second half and
proceed forward...

Stanford University

Binary search

ﬂ-----ﬂ- 9 10

13 25 29 33 51 89 90 95

Let’s say the answer was case 3, “we didn’t go far enough”

* We ruled out the entire first half, and now only have the
second half to search

« We could start at the front of the second half and
proceed forward...but why do that when we know we
have a better way?

Jump right to the middle of the region to search

Stanford University

Binary search

ﬂ-----ﬂ- 9 10

13 25 29 33 51 89 90 95

Let’s say the answer was caseg, “we didn’t go far enough”
* Weruled o nd now only have the

* We cO¥ econd half and
#twhen we know we

Te region to search

Stanford University

Designing a recursive algorithm

Recursion is a way of taking a big problem and repeatedly breaking it
into smaller and smaller pieces until it is so small that it can be so
easily solved that it almost doesn't even need solving.

There are two parts of a recursive algorithm:

» base case: where we identify that the problem is so small that we
trivially solve it and return that result

» recursive case: where we see that the problem is still a bit too big for
our taste, so we chop it into smaller bits and call our self (the function
we are in now) on the smaller bits to find out the answer to the
problem we face

Stanford University

To write a recursive function, we need base
case(s) and recursive call(s)

What would be a good base case for our Binary
Search function?

three items remaln yourself an
call that would trivially
size 1, and just check

\

— C Only one item remains: check it.
v D. No items remain: obviously we didn’t find it.
E. More than one

Stanford University

Binary Search

bool binarySearch(const Vector<int>& data, int key){
return binarySearch(data, key, 0, data.size()-1);

MW } B

oV
2\/\\/\0 > bool binarySearch(const Vector<int>& data, in kﬁ,y@"/‘/‘
< el >

int start, int end){ (Q c we S V¢
<X:0 //to be continued.. %/\ CA/‘ o
} wSf
(ot g
LW\
\¢

Stanford University

Fractals: Boxy Snowflake Fractal

Fractals, squee!!!

Stanford University

Boxy Snowflake example

Where should this line of code be inserted to produce the pattern DF:E
shown on the right?

drawFilledBox (window, cx, cy, dim, "Gray", "Black"); E;:Ei

static const double kScale = 0.45;

static void drawFractal (GWindow& window, double cx, double cy,
double dim, int order) {

if (order >= 0) {
drawFractal (window, 6 kScale*dim, order-1);
drawFractal(w ndow, cx+dim/2, cy-dim/2, kScale*dim, order-1);
drawFraé;£§§§indow, cx-dim/2, cy-dim/2, kScale*dim, order-1);
drawFractal (window, cx+dim/2, cy+dim/2, kScale*dim, er-1);

P
} "? L/ Stanford Universit/y

Variants:

How can we code this?

Stanford University

Real or Photoshop?

Can these be made by changing the order of lines and/or
deleting lines in the draw function?

(1) (2)
(A) Only 1 is real (B) Only 2 is real
(C) Both are ‘shopped (D) Both are real

Stanford University

