Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Today'’s topics:

= Previous lectures:
Introduction to recursion with Factorial
Mechanics of recursion: looking at the stack frames
Classic, widely-used CS algorithm example: Binary Search
» Visual example: Boxy “snowflake” fractal
= Today:
» New patterns of recursion application: adding loops
» Loops + recursion for generating permutations
« Loops + recursion for recursive backtracking

N

N

N

Stanford University

Announcement: Recursive art contest!

= Go to http://recursivedrawing.com/
= Make recursive art
> Win prizes!
= Come to my office hours and see my Wall of Fame of past recursive art
submissions!
» Submission deadline:
» Wednesday of Week 4 (October 14)
= Submission procedure:
» Email me: cbl@stanford.edu

Stanford University

http://recursivedrawing.com/

Wall of Fame

Backtracking

Maze solving

Stanford University

Backtracking

A particular behavior in recursive code where
you tentatively explore many options, and
recover to the nearest junction when you hit a
“dead end”

The easiest way to understand this is probably to
see literal exploration and dead ends

Stanford University

Maze-solving

Stanford University

Maze-solving

Thinking through the
pseudo-code:
= From position O,
what does it mean
for a step North to
be a good idea?

Stanford University

Maze-solving

Thinking through the
pseudo-code:

= From position O,
‘ what does it mean
| for a step South to
o be a good idea?
_‘ = |t means that from
position one-step-
South-of-0, there

exists some step that
is a good idea...

= _..Recursion!

Stanford University

Backtracking template

= bool recursiveFunction(){
> Base case test for success: return true
» Base case test for failure: return false
> Loop over several options for “what to do next”:
» Tentatively “do” one option
» if (recursiveFunction()) return true
» That tentative idea didn’t work, so “undo” that option
» None of the options we tried in the loop worked, so return false

Stanford University

SolveMaze code

Adapted from the textbook by Eric Roberts

bool solveMaze(Maze & maze, Point start) {
if (maze.isOutside(start)) return true;
if (maze.isMarked(start)) return false;
maze.markSquare(start);
pause(200);
for (Direction dir = NORTH; dir <= WEST; dir++) {
if (!maze.wallExists(start, dir)) {
if (solveMaze(maze, adjacentPoint(start, dir))) {
return true;

}
} enum Direction =
} {NORTH, EAST, SOUTH,
maze.unmarkSquare(start); WEST} ;

return false;

Stanford University

//order of for loop:
enum Direction =
{NORTH, EAST, SOUTH, WEST};

Maze-solving

‘ In what order do we visit
these spaces?

A. X1, x2, x3
B. x2, X3, x1
C. x1, x3, x2

We don’t visit all three
E. Other/non

Stanford University

The stack

What is the deepest the Stack

Stack

gets (number of stack frames)

during the solving of this maze?
A.

Less than 5

B. 5-10
C.
D
E

11-20

. More than 20
. Other/none/more

Heap

Stanford University

Contrast: Recursive maze-solving vs. Word ladder

With word ladder, you did breadth-first search
= This problem uses depth-first search

= Both are possible for maze-solving!

= The contrast between these approaches is a theme
that you’ll see again and again in your CS career

Stanford University

