
Programming Abstractions

Cynthia Lee

C S 1 0 6 X



Today’s topics:

 Previous lectures:

› Introduction to recursion with Factorial

› Mechanics of recursion: looking at the stack frames

› Classic, widely-used CS algorithm example: Binary Search

› Visual example: Boxy “snowflake” fractal

 Today:

› New patterns of recursion application: adding loops

• Loops + recursion for generating permutations

• Loops + recursion for recursive backtracking

2



Announcement: Recursive art contest!

 Go to http://recursivedrawing.com/

 Make recursive art

› Win prizes!

 Come to my office hours and see my Wall of Fame of past recursive art 

submissions!

 Submission deadline: 

› Wednesday of Week 4 (October 14)

 Submission procedure:

› Email me: cbl@stanford.edu

3

http://recursivedrawing.com/


Wall of Fame



Backtracking
Maze solving



Backtracking

A particular behavior in recursive code where 

you tentatively explore many options, and 

recover to the nearest junction when you hit a 

“dead end”

The easiest way to understand this is probably to 

see literal exploration and dead ends



7

Maze-solving

Θ



8

Maze-solving

Θ

Thinking through the 

pseudo-code:

 From position Θ, 

what does it mean 

for a step North to 

be a good idea?



9

Maze-solving

Θ

Thinking through the 

pseudo-code:

 From position Θ, 

what does it mean 

for a step South to 

be a good idea?

 It means that from 

position one-step-

South-of-Θ, there 

exists some step that 

is a good idea…

 …Recursion!



Backtracking template

 bool recursiveFunction(){

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

• Tentatively “do” one option

• if (recursiveFunction()) return true

• That tentative idea didn’t work, so “undo” that option

› None of the options we tried in the loop worked, so return false



SolveMaze code
Adapted from the textbook by Eric Roberts

bool solveMaze(Maze & maze, Point start) {

if (maze.isOutside(start)) return true;

if (maze.isMarked(start)) return false;

maze.markSquare(start);

pause(200);

for (Direction dir = NORTH; dir <= WEST; dir++) {

if (!maze.wallExists(start, dir)) {

if (solveMaze(maze, adjacentPoint(start, dir))) {

return true;

}

}

}

maze.unmarkSquare(start);

return false;

}

enum Direction = 

{NORTH, EAST, SOUTH, 

WEST};



12

Maze-solving

x1

x2 Θ

x3

In what order do we visit 

these spaces?

A. x1, x2, x3

B. x2, x3, x1

C. x1, x3, x2

D. We don’t visit all three

E. Other/none/more

//order of for loop:
enum Direction = 
{NORTH, EAST, SOUTH, WEST};



13

The stack

Θ

What is the deepest the Stack 

gets (number of stack frames) 

during the solving of this maze?

A. Less than 5

B. 5-10

C. 11-20

D. More than 20

E. Other/none/more

Heap

Stack

0



Contrast: Recursive maze-solving vs. Word ladder

 With word ladder, you did breadth-first search

 This problem uses depth-first search

 Both are possible for maze-solving!

 The contrast between these approaches is a theme 

that you’ll see again and again in your CS career


