Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics du Jour:

= |asttime:
» Performance of Fibonacci recursive code

» Look at growth of various functions
» Traveling Salesperson problem
« Problem sizes up to number of Facebook accounts
= This time: Big-O performance analysis
» Formal mathematical definition
> Applying the formal definition (graphs)
» Simplifying Big-O expressions
> Analyzing algorithms/code

 Just a bit for now, but we’'ll be applying this to all our algorithms as we
encounter them from now on

Stanford University

Big-O

Extracting time cost from example code

Stanford University

Translating code to a f(n) model of the performance

Statements Cost
(C 1 double findAvg (Vector<int>& grades){
n= S\ o 2 double sum = 0; 1
\? o r 3 int count = 0; 1
4 while (count < grades.size()) { n+1
5 sum += grades[count]; n
6 count++; n
! }
1
Do we really care about the +5? size():
Or the 3 for that matter? 1
11 return 0.0;
2 |1
ALL 3n+5

Stanford University

¥ o5 Facebook Gtcounts

log,n n log,n n? 2n
2 8 16 16
3 24 64 256
4 64 256 65,536
5 160 1,024 | 4,294,967,296
6 384 4096 1.84x10%
7 896 16,384 | 3.40x 10%
8 2,048 65536 1.16x 107
9 4,608 262,144 | 1.34x 1054
10 (o003 (ooozs)| H8OX10°
30]1,300,000,000 3900000?10305()) mooooooggoffe)g?(s)()) 10391,323;5;9’2

Stanford University

Definition of Big-O

We say a function f(n) is “big-O” of another function
g(n), and write “f(n) is O(g(n))” iff there exist positive
constants ¢ and n, such that for all n =2 n,, f(n) < c g(n).

M,I\Tw\ow‘f?)'s %rmﬁm F\ 0\
oWNL

dc,ng > O,S.t.vil >ng, f(n) <c-gn)

C/Q\ \H\‘\V\

\ W\~
AR N gmw k

Stanford University

http://commons.wikimedia.org/wiki/File:Kitten_(06) by Ron.jpg

Image has been put in the public domain by its author.

Definition of Big-O

We say a function f(n) is “big-O” of another function
g(n), and write “f(n) is O(g(n))” iff there exist positive
constants ¢ and n, such that for all n =2 n,, f(n) < c g(n).

dc,ng > 0,s.t.v

at you need to know:

O(X) describes an “upper bound”™—the algorithm wi
perform no worse than X (maybe better than X

« We ignore constant factors in saying th
Ne ignore behavior for “small” n Stanford University

Translating code to a f(n) model of the performance

Statements Cost
(C 1 double findAvg (Vector<int>& grades){
n= S\ o 2 double sum = 0; 1
\? o r 3 int count = 0; 1
4 while (count < grades.size()) { n+1
5 sum += grades[count]; n
6 count++; n
! }
1
Do we really care about the +5? size():
Or the 3 for that matter? 1
11 return 0.0;
2 |1
ALL 3n+5

Stanford University

Big-O

Interpreting graphs

Stanford University

. “f(n) is O(g(n))” iff
f2 IS O(f]) dc,ng > 0,s.t.Yn=>ny, f(n) <c-gn)

2000 i
B. FALSE / 1 Q(>

1000
%
mmmmm

mmmmmmmmmmmm

Why or why not?

Stanford University

. “f(n) is O(g(n))” iff
fl IS O(fz) dc,ng > 0,s.t.Yn=>ny, f(n) <c-gn)

A.TRU N
"FALSE e

1500 /
1000 A

Why or why not? ** 7~ —,

L LR LR LR LR LR R LRI ARt
NNNNNNNNNNN
mmmmmmmmmmmmm

Stanford University

f(n) is O(g(n)), if there are positive constants ¢ and n,
such that f(n) < c * g(n) for all n = n,. .
=3 C*’Q”*z,
9

f, = O(f,) because f, is 2500
above f,—an “upper - / o,
bound” / /

But also true: f; = O(f,) 1500 / /

= We can move f, above f; 1000
by multiplying by c / /

500 V f
0o 7)) 2

Stanford University

“f(n) is O(g(n))” iff
dc,ng > 0,s.t.Vn=ny, f(n) < c-gn)

f51s O(f,)
/"
2000
A. TRUE /
B. FALSE 1500 /
1000 - f1
The constant c 500
cannot rescue us f
here “because ° -1 4 7 1013161922252831343740434649
calculus.”

Stanford University

Announcements:

= Assignments 3&4 are traditionally thought of as one assignment, but | separated
out the deadlines because it's a lot to manage.

= Assignment 3 went out Friday (recursion warm-ups)
» Due this Friday
» As of last Wednesday, you have all necessary topics
= Assignment 4 goes out tomorrow (Boggle)
> Due next Wednesday
» As of this Wednesday, you will have all necessary topics

» Suggestion: read the chapter about classes and objects NOW, so you can
really hit the ground running Wednesday

= | will be out of town for the rest of the week
»y CS106B’s Marty Stepp will be lecturing Wednesday and Friday
> No instructor office hours this week—use Piazza to reach me

Stanford University

Simplifying Big-O Expressions

= We always report Big-O analyses in simplified form and
generally give the tightest bound we can

= Some examples:

Letf(n) = 4 log,n + Bnlog,n }+ n......... f(n) is O(| 9).
Let f(n) =546 + 34n + Bn2..........ocvve.. f(n)is O(N Z).
Let f(n) =20 4 Y4n2 + M3 imyiso(2y o .
Let f(N) = 200+ ..+ oeeee e, f(n)is O(|). C@V‘SM&

Stanford University

Big-O

Applying to algorithms

Stanford University

Applying Big-O to Algorithms
= Some familiar examples:

Binary search..................... IS O(/OL%/L‘) where nis e cjro
m-----m- 910

13 25 29 33 51 89 90 95

r

WASTEAN
Fauxtoshop edge detectlonw.\s O(M)wherenis (9 A LS O S
e Lo 0)
A Lo ov (_m
m R+1 R+1 R+1

B
Cc-1 C +0 C+1 W]

Stanford University

Applying Big-O to Algorithms

= Some code examples:
for (int i = data.size() - 1; i >= 0;(1i -= 3) Eg’v\

for (int j = 0; j < data.size(); j += 3){ ® | N
cout << %EEEIEEE§< ata[j] k< endl; 2
| ol -
} 2

2
is O(|n) wherenis data.size().

Stanford University

Applying Big-O to Algorithms

= Some code examples:
for (int i = 0; i < data.size();{
cout << data[i] << endl;
) =

N Y4
Is O(]) where nis data.size(). gquiw

Q&L@/@’}f 0‘0“/\

Stanford University

