

Programming Abstractions

CS106X

Cynthia Lee

Topics du Jour:

- Last time:
 - › Performance of Fibonacci recursive code
 - › Look at growth of various functions
 - Traveling Salesperson problem
 - Problem sizes up to number of Facebook accounts
- **This time: Big-O performance analysis**
 - › Formal mathematical definition
 - › Applying the formal definition (graphs)
 - › Simplifying Big-O expressions
 - › Analyzing algorithms/code
 - Just a bit for now, but we'll be applying this to all our algorithms as we encounter them from now on

Big-O

Extracting time cost from example code

Translating code to a $f(n)$ model of the performance

$(n = \text{size of vector})$

	Statements	Cost
1	double findAvg (Vector<int>& grades){	
2	double sum = 0;	1
3	int count = 0;	1
4	while (count < grades.size()) {	$n + 1$
5	sum += grades[count];	n
6	count++;	n
7	}	
8		
9		
10		1
11	return 0.0;	
12	}	
ALL		$3n+5$

**Do we really care about the +5?
Or the 3 for that matter?**

$\log_2 n$	n	$n \log_2 n$	n^2	2^n
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16×10^{77}
9	512	4,608	262,144	1.34×10^{154}
10	1,024	10,240 (.000003s)	1,048,576 (.0003s)	1.80×10^{308}
30	1,300,000,000	390000000000 (13s)	16900000000000000000 (18 years)	2.3 x $10^{391,338,994}$

of Facebook accounts

Definition of Big-O

We say a function $f(n)$ is “**big-O**” of another function $g(n)$, and write “ $f(n)$ is **O**($g(n)$)” iff there exist positive constants c and n_0 such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

$$\exists c, n_0 > 0, \text{s. t. } \forall n \geq n_0, f(n) \leq c \cdot g(n)$$

↑
there exists

↑
for all

↑
some
algorithm
 $f(n) = 3n + 5$

↑
column
or
category
 $g(n) = n$

Image has been put in the public domain by its author.
[http://commons.wikimedia.org/wiki/File:Kitten_\(06\)_by_Ron.jpg](http://commons.wikimedia.org/wiki/File:Kitten_(06)_by_Ron.jpg)

Definition of Big-O

We say a function $f(n)$ is “**big-O**” of another function $g(n)$, and write “ $f(n)$ is **O**($g(n)$)” iff there exist positive constants c and n_0 such that for all $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

$$\exists c, n_0 > 0, \text{ s.t. } \forall n \geq n_0, f(n) \leq c \cdot g(n)$$

What you need to know:

$O(X)$ describes an “upper bound”—**the algorithm will perform no worse than X** (maybe better than X)

- We ignore constant factors in saying that
- We ignore behavior for “small” n

Translating code to a $f(n)$ model of the performance

$(n = \text{size of vector})$

	Statements	Cost
1	double findAvg (Vector<int>& grades){	
2	double sum = 0;	1
3	int count = 0;	1
4	while (count < grades.size()) {	$n + 1$
5	sum += grades[count];	n
6	count++;	n
7	}	
8		
9		
10		1
11	return 0.0;	
12	}	
ALL		$3n+5$

**Do we really care about the +5?
Or the 3 for that matter?**

Big-O

Interpreting graphs

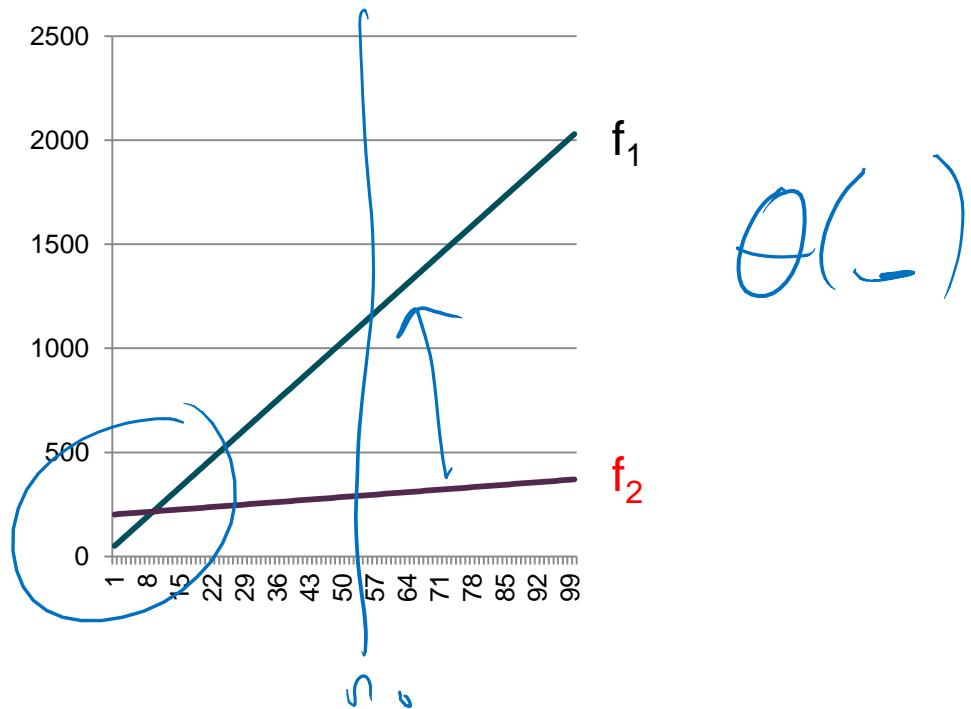
f_2 is $O(f_1)$

A. TRUE

B. FALSE

Why or why not?

“ $f(n)$ is $O(g(n))$ ” iff
 $\exists c, n_0 > 0, s.t. \forall n \geq n_0, f(n) \leq c \cdot g(n)$



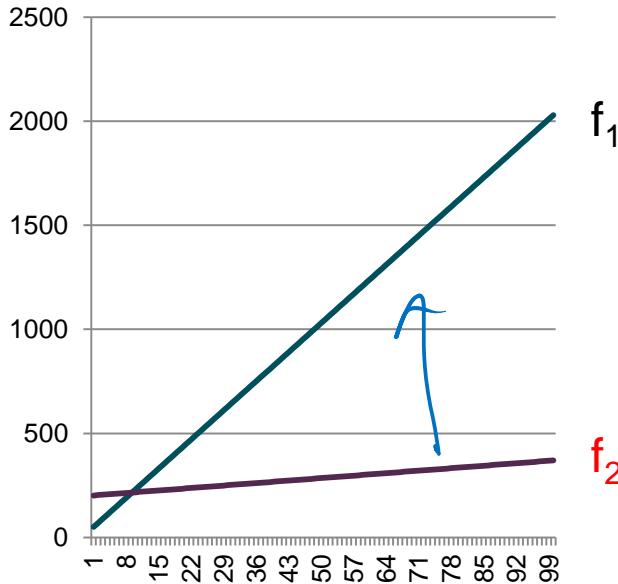
f_1 is $O(f_2)$

“ $f(n)$ is $O(g(n))$ ” iff

$\exists c, n_0 > 0, s.t. \forall n \geq n_0, f(n) \leq c \cdot g(n)$

A. TRUE
B. FALSE

Why or why not?

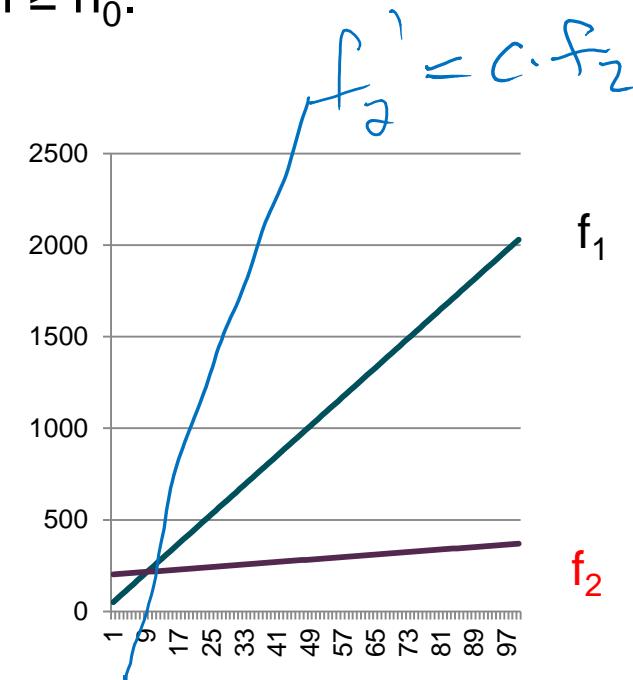


$f(n)$ is $O(g(n))$, if there are positive constants c and n_0 such that $f(n) \leq c * g(n)$ for all $n \geq n_0$.

$f_2 = O(f_1)$ because f_1 is above f_2 —an “upper bound”

But also true: $f_1 = O(f_2)$

- We can move f_2 above f_1 by multiplying by c



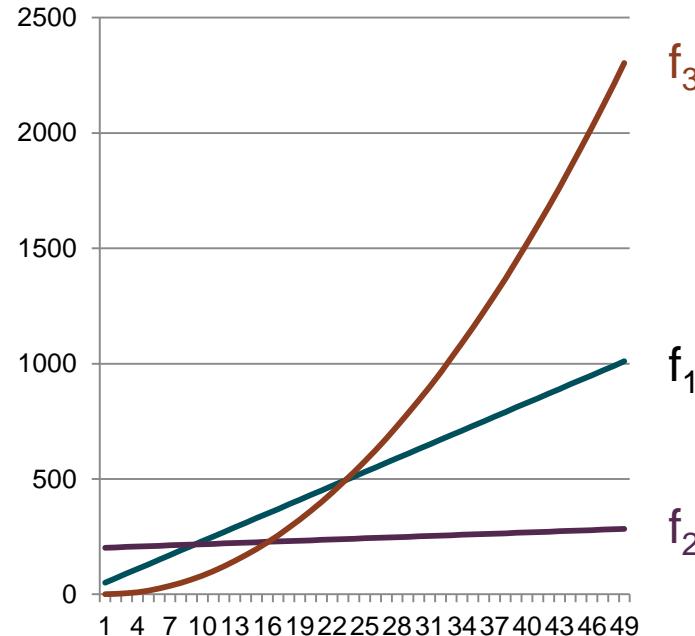
“ $f(n)$ is $O(g(n))$ ” iff

$$\exists c, n_0 > 0, \text{s.t. } \forall n \geq n_0, f(n) \leq c \cdot g(n)$$

f_3 is $O(f_1)$

- A. TRUE
- B. FALSE

The constant c cannot rescue us here “because calculus.”



Announcements:

- Assignments 3&4 are traditionally thought of as one assignment, but I separated out the deadlines because it's a lot to manage.
- Assignment 3 went out Friday (recursion warm-ups)
 - › Due this Friday
 - › As of last Wednesday, you have all necessary topics
- Assignment 4 goes out tomorrow (Boggle)
 - › Due next Wednesday
 - › As of this Wednesday, you will have all necessary topics
 - › Suggestion: read the chapter about classes and objects NOW, so you can really hit the ground running Wednesday
- ***I will be out of town for the rest of the week***
 - › CS106B's Marty Stepp will be lecturing Wednesday and Friday
 - › **No instructor office hours this week**—use Piazza to reach me

Simplifying Big-O Expressions

- We always report Big-O analyses in simplified form and generally give the tightest bound we can
- Some examples:

Let $f(n) = 3 \log_2 n + 4 n \log_2 n + n$ $f(n)$ is $O(n \log n)$.

Let $f(n) = 546 + 34n + 2n^2$ $f(n)$ is $O(n^2)$.

Let $f(n) = 2^n + 14n^2 + 4n^3$ $f(n)$ is $O(2^n)$. "exponential"

Let $f(n) = 100$ $f(n)$ is $O(1)$. "constant"

Big-O

Applying to algorithms

Applying Big-O to Algorithms

- Some familiar examples:

Binary search.....is $O(\log_2 n)$ where n is size of vector.

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Fauxtoshop edge detection...is $O(n \cdot m)$ where n is rows, m is cols

R -1 C -1	R -1 C +0	R -1 C +1		
R +0 C -1	R +0 C +0	R +0 C +1		
R +1 C -1	R +1 C +0	R +1 C +1		

for (n)
for (m)
for
for

Applying Big-O to Algorithms

- Some code examples:

```
for (int i = data.size() - 1; i >= 0; i -= 3){
    for (int j = 0; j < data.size(); j += 3){
        cout << data[i] << data[j] << endl;
    }
}
```

is $O(h^2)$ where n is `data.size()`.

$$\begin{aligned}
 & \frac{1}{3}n \cdot \frac{1}{3}n \\
 & \quad \text{---} \\
 & \quad \text{---} \\
 & \quad h^2 \\
 & \quad \text{---} \\
 & \quad \text{---} \\
 & \quad n^2 \\
 & \quad \text{---} \\
 & \quad \text{---} \\
 & \quad h^4
 \end{aligned}$$

Applying Big-O to Algorithms

- Some code examples:

```
for (int i = 0; i < data.size(); i += (data.size() / 5)) {  
    cout << data[i] << endl;  
}
```

is $O(\text{ })$ where n is `data.size()`.

∞ loop

assume:
 $\text{data.size}() \geq 5$