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Topics du Jour:

 Last time:

› Performance of Fibonacci recursive code

› Look at growth of various functions

• Traveling Salesperson problem

• Problem sizes up to number of Facebook accounts

 This time: Big-O performance analysis

› Formal mathematical definition

› Applying the formal definition (graphs)

› Simplifying Big-O expressions

› Analyzing algorithms/code 

• Just a bit for now, but we’ll be applying this to all our algorithms as we 

encounter them from now on
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Big-O
Extracting time cost from example code
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Translating code to a f(n) model of the performance

Statements Cost

1 double findAvg ( Vector<int>& grades ){
2 double sum = 0; 1
3 int count = 0; 1
4 while ( count < grades.size() ) { n + 1
5 sum += grades[count]; n
6 count++; n
7 }
8 if ( grades.size() > 0 ) 1
9 return sum / grades.size();
10 else 1
11 return 0.0;
12 }

ALL 3n+5

Do we really care about the +5? 

Or the 3 for that matter?



log2n n n log2n n2 2n

2 4 8 16  16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240  

(.000003s)

1,048,576  

(.0003s)
1.80 x 10308

30 1,300,000,000
39000000000

(13s)

1690000000000000000

(18 years)
2.3 x 

10391,338,994



Definition of Big-O

We say a function f(n) is “big-O” of another function 

g(n), and write “f(n) is O(g(n))” iff there exist positive 

constants c and n0 such that for all n ≥ n0, f(n) ≤ c g(n).

∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
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Definition of Big-O

We say a function f(n) is “big-O” of another function 

g(n), and write “f(n) is O(g(n))” iff there exist positive 

constants c and n0 such that for all n ≥ n0, f(n) ≤ c g(n).

What you need to know:

O(X) describes an “upper bound”—the algorithm will 

perform no worse than X (maybe better than X)

• We ignore constant factors in saying that

• We ignore behavior for “small” n

∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
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Translating code to a f(n) model of the performance

Statements Cost

1 double findAvg ( Vector<int>& grades ){
2 double sum = 0; 1
3 int count = 0; 1
4 while ( count < grades.size() ) { n + 1
5 sum += grades[count]; n
6 count++; n
7 }
8 if ( grades.size() > 0 ) 1
9 return sum / grades.size();
10 else 1
11 return 0.0;
12 }

ALL 3n+5

Do we really care about the +5? 

Or the 3 for that matter?



Big-O
Interpreting graphs
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f2 is O(f1)

A. TRUE

B. FALSE

Why or why not?
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∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
“f(n) is O(g(n))” iff
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f1 is O(f2)

A. TRUE

B. FALSE

Why or why not?
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∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
“f(n) is O(g(n))” iff



13

f2 = O(f1) because f1 is 

above f2—an “upper 

bound”

But also true: f1 = O(f2)

 We can move f2 above f1 

by multiplying by c
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f(n) is O(g(n)), if there are positive constants c and n0

such that f(n) ≤ c * g(n) for all n ≥ n0.
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f3 is O(f1)

A. TRUE

B. FALSE

The constant c 
cannot rescue us 
here “because 
calculus.”
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∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
“f(n) is O(g(n))” iff



Announcements:

 Assignments 3&4 are traditionally thought of as one assignment, but I separated 

out the deadlines because it’s a lot to manage.

 Assignment 3 went out Friday (recursion warm-ups)

› Due this Friday

› As of last Wednesday, you have all necessary topics

 Assignment 4 goes out tomorrow (Boggle)

› Due next Wednesday

› As of this Wednesday, you will have all necessary topics

› Suggestion: read the chapter about classes and objects NOW, so you can 

really hit the ground running Wednesday

 I will be out of town for the rest of the week

› CS106B’s Marty Stepp will be lecturing Wednesday and Friday

› No instructor office hours this week—use Piazza to reach me
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Simplifying Big-O Expressions

 We always report Big-O analyses in simplified form and 

generally give the tightest bound we can

 Some examples:

Let f(n) = 3 log
2
n +  4 nlog

2
n +  n………..f(n) is O(            ).

Let f(n) = 546 + 34n + 2n2……………..…..f(n) is O(    ).

Let f(n) = 2n + 14n2 + 4n3……………..…...f(n) is O( ).

Let f(n) = 100……………………....…..…...f(n) is O(     ).



Big-O
Applying to algorithms
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Applying Big-O to Algorithms

 Some familiar examples:

Binary search…….…………..is O(        ) where n is                    .

Fauxtoshop edge detection...is O(   ) where n is                    .
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Applying Big-O to Algorithms

 Some code examples:

for (int i = data.size() - 1; i >= 0; i -= 3){ 

for (int j = 0; j < data.size(); j += 3){

cout << data[i] << data[j] << endl; 

}

}

is O(       ) where n is data.size().
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Applying Big-O to Algorithms

 Some code examples:

for (int i = 0; i < data.size(); i += (data.size() / 5)) { 

cout << data[i] << endl; 

}

is O(       ) where n is data.size().


