
Programming Abstractions

Cynthia Lee

C S 1 0 6 X

Topics du Jour:

 Last time:

› Performance of Fibonacci recursive code

› Look at growth of various functions

• Traveling Salesperson problem

• Problem sizes up to number of Facebook accounts

 This time: Big-O performance analysis

› Formal mathematical definition

› Applying the formal definition (graphs)

› Simplifying Big-O expressions

› Analyzing algorithms/code

• Just a bit for now, but we’ll be applying this to all our algorithms as we

encounter them from now on

2

Big-O
Extracting time cost from example code

4

Translating code to a f(n) model of the performance

Statements Cost

1 double findAvg (Vector<int>& grades){
2 double sum = 0; 1
3 int count = 0; 1
4 while (count < grades.size()) { n + 1
5 sum += grades[count]; n
6 count++; n
7 }
8 if (grades.size() > 0) 1
9 return sum / grades.size();
10 else 1
11 return 0.0;
12 }

ALL 3n+5

Do we really care about the +5?

Or the 3 for that matter?

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)

1,048,576

(.0003s)
1.80 x 10308

30 1,300,000,000
39000000000

(13s)

1690000000000000000

(18 years)
2.3 x

10391,338,994

Definition of Big-O

We say a function f(n) is “big-O” of another function

g(n), and write “f(n) is O(g(n))” iff there exist positive

constants c and n0 such that for all n ≥ n0, f(n) ≤ c g(n).

∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)

Im
a

g
e

 h
a

s
 b

e
e

n
 p

u
t

in
 t

h
e

 p
u
b

lic
 d

o
m

a
in

 b
y
 i
ts

 a
u

th
o

r.

h
tt

p
:/

/c
o

m
m

o
n

s
.w

ik
im

e
d

ia
.o

rg
/w

ik
i/
F

ile
:K

it
te

n
_

(0
6

)_
b

y
_

R
o
n

.j
p

g

Definition of Big-O

We say a function f(n) is “big-O” of another function

g(n), and write “f(n) is O(g(n))” iff there exist positive

constants c and n0 such that for all n ≥ n0, f(n) ≤ c g(n).

What you need to know:

O(X) describes an “upper bound”—the algorithm will

perform no worse than X (maybe better than X)

• We ignore constant factors in saying that

• We ignore behavior for “small” n

∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)

9

Translating code to a f(n) model of the performance

Statements Cost

1 double findAvg (Vector<int>& grades){
2 double sum = 0; 1
3 int count = 0; 1
4 while (count < grades.size()) { n + 1
5 sum += grades[count]; n
6 count++; n
7 }
8 if (grades.size() > 0) 1
9 return sum / grades.size();
10 else 1
11 return 0.0;
12 }

ALL 3n+5

Do we really care about the +5?

Or the 3 for that matter?

Big-O
Interpreting graphs

11

f2 is O(f1)

A. TRUE

B. FALSE

Why or why not?

0

500

1000

1500

2000

2500

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

f1

f2

∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
“f(n) is O(g(n))” iff

12

f1 is O(f2)

A. TRUE

B. FALSE

Why or why not?

0

500

1000

1500

2000

2500

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

f1

f2

∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
“f(n) is O(g(n))” iff

13

f2 = O(f1) because f1 is

above f2—an “upper

bound”

But also true: f1 = O(f2)

 We can move f2 above f1

by multiplying by c

0

500

1000

1500

2000

2500

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

f1

f2

f(n) is O(g(n)), if there are positive constants c and n0

such that f(n) ≤ c * g(n) for all n ≥ n0.

14

f3 is O(f1)

A. TRUE

B. FALSE

The constant c
cannot rescue us
here “because
calculus.”

0

500

1000

1500

2000

2500

1 4 7 1013161922252831343740434649

f1

f2

f3

∃𝑐, 𝑛0 > 0, 𝑠. 𝑡. ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)
“f(n) is O(g(n))” iff

Announcements:

 Assignments 3&4 are traditionally thought of as one assignment, but I separated

out the deadlines because it’s a lot to manage.

 Assignment 3 went out Friday (recursion warm-ups)

› Due this Friday

› As of last Wednesday, you have all necessary topics

 Assignment 4 goes out tomorrow (Boggle)

› Due next Wednesday

› As of this Wednesday, you will have all necessary topics

› Suggestion: read the chapter about classes and objects NOW, so you can

really hit the ground running Wednesday

 I will be out of town for the rest of the week

› CS106B’s Marty Stepp will be lecturing Wednesday and Friday

› No instructor office hours this week—use Piazza to reach me

15

16

Simplifying Big-O Expressions

 We always report Big-O analyses in simplified form and

generally give the tightest bound we can

 Some examples:

Let f(n) = 3 log
2
n + 4 nlog

2
n + n………..f(n) is O().

Let f(n) = 546 + 34n + 2n2……………..…..f(n) is O().

Let f(n) = 2n + 14n2 + 4n3……………..…...f(n) is O().

Let f(n) = 100……………………....…..…...f(n) is O().

Big-O
Applying to algorithms

18

Applying Big-O to Algorithms

 Some familiar examples:

Binary search…….…………..is O() where n is .

Fauxtoshop edge detection...is O() where n is .

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

R -1

C -1

R -1

C +0

R -1

C +1

R +0

C -1

R +0

C +0

R +0

C +1

R +1

C -1

R +1

C +0

R +1

C +1

19

Applying Big-O to Algorithms

 Some code examples:

for (int i = data.size() - 1; i >= 0; i -= 3){

for (int j = 0; j < data.size(); j += 3){

cout << data[i] << data[j] << endl;

}

}

is O() where n is data.size().

20

Applying Big-O to Algorithms

 Some code examples:

for (int i = 0; i < data.size(); i += (data.size() / 5)) {

cout << data[i] << endl;

}

is O() where n is data.size().

