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Class examples

e A calendar program might want to store information
about dates, but C++ does not have a Date type.

e A student registration system needs to store info
about students, but C++ has no Student type. ”

studént « /
: »
registration '

e A bank app might want to store information about

users' accounts, but C++ has no BankAccount type. Q

v

e However, C++ does provide a feature for us to add
new data types to the language: classes.

— Writing a class defines a new data type.



Classes and objects (6.1)

e class: A program entity that represents
a template for a new type of objects.

— e.g. class Vector defines a new data type
named Vector and allows you to declare
objects of that type.

e object: Entity that combines state and behavior.

— object-oriented programming (OOP): Programs that perform their
behavior as interactions between objects.

— abstraction: Separation between concepts and details.
Objects provide abstraction in programming.



Client, class, object

Client program

int main() {

asks class to construct a new object

- interacts with class and objects

send/receive messages with object
by calling member functions
(never directly access private data)

Class
- what goes into each object \
- how to construct new objects
Object
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Elements of a class

e member variables: State inside each object.
— Also called "instance variables" or "fields"
— Declared as private
— Each object created has a copy of each field.

e member functions: Behavior that executes inside each object.
— Also called "methods"
— Each object created has a copy of each method.
— The method can interact with the data inside that object.

e constructor: Initializes new objects as they are created.
— Sets the initial state of each new object.
— Often accepts parameters for the initial state of the fields.



Interface vs. code

e In C++, when writing classes you must understand separation of:
— interface: Declarations of functions, classes, members, etc.
— implementation: Definitions of how the above are implemented.

e C++ implements this separation using two kinds of code files:
- .h: A "header" file containing only interface (declarations).

- .cpp: A "source" file containing definitions.
e When you define a new class Foo, you write Foo.h and Foo. cpp.

e The content of .h files is "#included" inside .cpp files.
— Makes them aware of declarations of code implemented elsewhere.
— At compilation, all definitions are linked together into an executable.



Structure of a .h file

// classname.h
#ifndef _classname_h

) < This is protection in case
#tdefine _classname_h multiple .cpp files include this .h,

so that its contents won't
get declared twice

class declaration;

#Hendif



A class declaration

class ClassName { // in ClassName.h
public:
ClassName (parameters) // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)

private:

type name; // member variables

type name; // (data inside each object)
}s

\

IMPORTANT: must put a semicolon at end of class declaration (argh)



Class example (v1)

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#ifndef _bankaccount h
#define _bankaccount _h

class BankAccount {

public:
string name; // each BankAccount object
double balance; // has a name and balance

s

#Hendif



Using objects

// vl with public fields (bad)

BankAccount bail; bal
bal.name = "Marty"; name = "Marty"
bal.balance = 1.25; balance = 1.25
BankAccount ba2; ba?2
ba2.name = "Mehran”; , -
name = "Mehran

ba2.balance = 9999.00; balance = 9999.09

e Think of an object as a way of grouping multiple variables.
— Each object contains a name and balance field inside it.
— We can get/set them individually.
— Code that uses your objects is called client code.
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Member func. bodies

e In ClassName . cpp, we write bodies (definitions) for the member
functions that were declared in the . h file:

// ClassName.cpp
#include "ClassName.h"

// member function
returnType ClassName: :methodName (parameters) {

statements;

¥

— Member functions/constructors can refer to the object's fields.

e Exercise: Write a withdraw member function to deduct money

from a bank account's balance.
11



The implicit parameter

e implicit parameter:
The object on which a member function is called.

— During the callmarty.withdraw(...),
the object named marty is the implicit parameter.

— During the callmehran.withdraw(...),
the object named mehran is the implicit parameter.

— The member function can refer to that object's member variables.

e \We say that it executes in the context of a particular object.
e The function can refer to the data of the object it was called on.

e [t behaves as if each object has its own copy of the member functions.
12



Member func diagram

// BankAccount.cpp
void BankAccount: :withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}
} name "marty" balance | 1.25
. void withdraw(double amount) {
// client program if (balance >= amount) {
BankAccount marty; balance -= amount;
BankAccount mehran; - -
name mehran balance 9999

marty.withdraw(5.00);
void withdraw(double amount) {
if (balance >= amount) {
balance -= amount;

mehran.withdraw(99.00);
}

13



Initializing objects

e |t's bad to take 3 lines to create a BankAccount and initialize it:

BankAccount ba;
ba.name = "Marty";
ba.balance = 1.25; // tedious

e \We'd rather specify the fields' initial values at the start:
BankAccount ba("Marty", 1.25); // better

— We are able to this with most types of objects in C++ and Java.
— You can achieve this functionality using a constructor.
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ClassName: :ClassName (parameters) A
statements to initialize the object;

¥

e constructor: Initializes state of new objects as they are created.

— runs when the client declares a new object

— no return type is specified;
it implicitly "returns” the new object being created

— If a class has no constructor, C++ gives it a default constructor with no
parameters that does nothing.
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Constructor diagram

// BankAccount.cpp
BankAccount: :BankAccount(string n, double b) {
name = n;

balance b;
} name balance

BankAccount(string n, double b) {
name = n;

// client program balance = b;

BankAccount bl( }
"Marty", 1.25);
name balance
BankAccount b2(
"Mehran", 9999); BankAccount(string n, double b) {

name = n;
balance = b;
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The keyword this

e Asin Java, C++ has a this keyword to refer to the current object.
— Syntax: this->member

— Common usage: In constructor, so parameter names can match the
names of the object's member variables:

BankAccount: :BankAccount(string name,
double balance) {
this->name = name;
this->balance = balance;

this uses -> not . becauseitis a "pointer"; we'll discuss that later
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Preconditions

e precondition: Something your code assumes is true
at the start of its execution.

— Often documented as a comment on the function's header:

// Initializes a BankAccount with the given state.

// Precondition: balance is non-negative

BankAccount: :BankAccount(string name, double balance) {
this->name = name;
this->balance = balance;

— Stating a precondition doesn't really "solve" the problem, but it at least
documents our decision and warns the client what not to do.

— What if we want to actually enforce the precondition?
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Throwing exceptions

throw expression;

e Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

// Initializes a BankAccount with the given state.
// Precondition: balance 1is non-negative
BankAccount: :BankAccount(string name, double balance) {

if (balance < 0) {
throw "Illegal negative balance";
}

this->name = name;
this->balance = balance;

e \Why would anyone ever want a program to crash?
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Private data

private:
type name;

e encapsulation: Hiding implementation details of an
object from its clients.

— Encapsulation provides abstraction.

e separates external view (behavior) from internal view (state)

— Encapsulation protects the integrity of an object's data.

e A class's data members should be declared private.
— No code outside the class can access or change it.
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Accessor functions

e \We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount::getBalance() {
return balance;

¥

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {
name = newName;

¥

— Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;
ba.setName("Cynthia");
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Encapsulation benefits

e Provides abstraction between an object and its clients.

e Protects an object from unwanted access by clients.

e Allows you to change the class implementation. 1
. : : (. 6)
— Point could be rewritten to use polar coordinates
(radius r, angle 9), but with the same methods. o

e Allows you to constrain objects' state (invariants).

— Example: Don't allow a BankAccount with a negative balance.

22



Operator overloading (6.2)

e C++ allows you to overload, or redefine, the behavior of many
common operators in the language:

—unary:+ - ++ -- * & | ~ new delete
— binary:+ - * / % += -= *= /= %= & | && ||
== l= < ><=>==[] -> () ,

e Overuse of operator overloading can lead to confusing code.

— Rule of Thumb: Don't abuse this feature. Don't define an overloaded
operator unless its meaning and behavior are completely obvious.
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Op overload syntax

e Declare your operator in a .h file, implementitin a .cpp file.

returnType operator op(parameters); // .h

returnType operator op(parameters) A // .cpp
statements;

}s

— where op is some operator like +, ==, <<, etc.

— the parameters are the operands next to the operator;
for example,a + b becomes operator +(Foo a, Foo b)

Overloaded operators can also be declared inside a class (not shown here)
24



Op overload example

// BankAccount.h
class BankAccount {

s

bool operator ==(BankAccount& bal, BankAccount& ba2);
bool operator !=(BankAccount& bal, BankAccount& ba2);

// BankAccount.cpp
bool operator ==(BankAccount& bal, BankAccount& ba2) {
return bal.getName() == ba2.getName()
&& bal.getBalance() == ba2.getBalance();

¥

bool operator !=(BankAccount& bal, BankAccount& ba2) {
return !(bal == ba2); // calls operator ==

¥
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Make objects printable

e To make it easy to print your object to cout, overload the <<
operator between an ostream and your type:

ostream& operator <<(ostream& out, Type& name) {
statements;
return out;

— The operator returns a reference to the stream so it can be chained.
ecout << a << b << c isreally ((cout << a) << b) << c
e Technically cout is being returned by each << operation.
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<< overload example

// BankAccount.h
class BankAccount {

s

ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {
out << ba.getName() << ": $"
<< setprecision(2) << ba.getBalance();
return out;
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The keyword const

e C++ const keyword indicates that a value cannot change.

const int x = 4; // x will always be 4

e a3 const reference parameter can't be modified by the function:
void foo(const BankAccount& ba) { // won't change ba

e Any attempts to modify d inside foo0's code won't compile.

e 3 const member function can't change the object's state:

class BankAccount { ...
double getBalance() const; // won't change account

e On a const reference, you can only call const member functions.
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Class constants

e To make a class constant, declare a static variable in the .h file.
— Assign its value in the .cpp, outside of any method.
— Don't write static or const when assigning the value in the .cpp.

// BankAccount.h
class BankAccount {
static const double INTEREST_RATE;

s

// BankAccount.cpp
double BankAccount::INTEREST_RATE = 0.0325; // 3.25%
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e C++ also has an entity called a structure (struct).

— Very similar to a class; a collection of data and (maybe) behavior.
— But has (by default) public fields and no methods.

struct Point {
int x;
int y;

}s

Point p;
p.x = 15;

— A holdover from C, which did not have classes or objects.

— Not used as often as classes, but you may see them from time to time.
31



C++ preprocessor

e preprocessor : Part of the C++ compilation process; recognizes
special # statements, modifies source code before it is compiled

function description
#include <filename> insert a library file's contents into this file
#include "filename" insert a user file's contents into this file
#define name [value] create a preprocessor symbol ("variable")
#if test if statement
#else else statement
#elif test else if statement
#endif terminates an if or if/else statement
#ifdef name if statement; true if name is defined
#ifndef name if statement; true if name is not defined
#undef name deletes the given symbol name
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