CS 106X

Arrays;
Implementing a Collection
(ArraylList)

guest presenter:
Marty Stepp (stepp AT cs DOT stanford DOT edu)

reading:

Programming Abstractions in C++,
11.2-11.3; 12.1,12.3,12.7; 14.1,14.4

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others. STU DENT

e So far in this course, we have used many collection classes:
— Vector, Grid, Stack, Queue, Map, Set, HashMap, HashSet, Lexicon, ...

e Now let's explore how they are implemented.

— We will start by implementing our own version of a Vector class.
e To do so, we must learn about arrays and memory allocation.

— After that, we will implement several other collections:

e linked list; binary tree set, map; hash table set, map; prefix tree
(Lexicon); priority queue; graph; ...

Arrays (11.3)

type* name = new type[length];

e A dynamically allocated array.
e The variable that refers to the array is a pointer.

e The memory allocated for the array must be manually released,
or else the program will have a memory leak. (> <)

— Another array creation syntax that we will not use:
type name[length];
e A fixed array; initialized at declaration; can never be resized.

e Stored in a different place in memory; the first syntax uses the stack and
the second uses the heap. (discussed later)

Initialized?

type* name = new type[length]; // uninitialized
type* name = new type[length](); // initialize to ©

e If () are written after the array [], it will set all array elements to their
default zero-equivalent value for the data type. (slower)

e If no () are written, the elements are uninitialized, so whatever garbage
values were stored in that memory beforehand will be your elements.

int* a = new int[3];
cout << al[@]; // 2395876
cout << a[l]; // -197630894

int* a2 = new int[3]();
cout << a[9]; //

0
cout << a[l]; // ©

How a Vector works

e Inside a Vector is an array storing the elements you have added.

— Typically the array is larger than the data added so far, so that it has
some extra slots in which to put new elements later.

e We call this an unfilled array.

Vector<int> v;
v.add(42); | TR
v.add(-5); vaiue '

v.add(17); size 3 capacity 10

e Let's write a class that implements a growable array of integers.

— We'll call it ArrayList. It will be very similar to the C++ Vector.

— its behavior:
e add(value) insert(index, value)
e get(index), set(index, value)
esize(), isEmpty()
e remove(index)
e indexOf(value), contains(value)
e toString()

— The list's size will be the number of elements added to it so far.

e The actual array length ("capacity") in the object may be larger.
We'll start with an array of length 10 by default.

ArrayList.h

#ifndef _arraylist h
#define _arraylist h
#include <string>

using namespace std;

class ArraylList {
public:
ArrayList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;
string toString() const;

private:
int* myElements; // array of elements
int myCapacity; // length of array
int mySize; // number of elements added

}s
#endif 7

Implementing add

* How do you append to the end of a list? list.add(42);
— place the new value in slot number size
— increment size

value 3 8 9 7 5 12

size 6 capacity 10

value | 3 8 9 7 5 112 | 42
size 7 capacity 10

add solution

// in ArraylList.cpp

void ArraylList::add(int value) {
myElements[mySize] = value;
mySize++;

Implementing insert

e How do you insert in the middle of a list? list.insert(3, 42);
— shift elements right to make room for the new element
— increment size

value 3 8 9 7 5 12

size 6 capacity 10

value | 3 8 9 |42 | 7 5 | 12
size 7 capacity 10

Q: In which direction should our array-shifting loop traverse?

A. left-to-right B. right-to-left C. either s fine STUDENT
10

insert solution

// in ArraylList.cpp

void ArraylList::insert(int index, int value) {
// shift right to make room
for (int 1 = mySize; i > index; 1i--) {

myElements[i] = myElements[i - 1];

}
myElements[index]
mySize++;

value;

11

Other members

e Let's implement the following member functions in our list:

- size() - Returns the number of elements in the list.
- get(index) - Returns the value at a given index.

- set(index, value) - Changes the value at the given index.

- isEmpty() - Returns true if list contains no elements.

e (Why bother to write this if we already have a size function?)

- toString() - String of the list suchas "{4, 1, 5}".
- operator << - Make the list printable to cout

12

Other members code

// in ArraylList.cpp
int ArrayList::get(int index) {
return myElements[index];

¥

void ArraylList::set(int index, int value) {
myElements[index] = value;

¥

int ArraylList::size() {
return mySize;

¥

bool ArraylList::isEmpty() {
return mySize == 0;

¥

13

Other members code

// in ArraylList.cpp
ostream& operator <<(ostream& out, const ArraylList& list) {
out << "{";
if (!list.isEmpty()) {
out << list.get(9);
for (int i = 1; 1 < list.size(); i++) {

)
} n n

out << ", << list.get(i);
out << ;

return out;

¥

string ArraylList::toString() const {
ostringstream out;
out << *this;
return out.str();

14

Implementing remove

e How do you remove an element from a list? 1list.remove(2);
— shift elements left to cover the deleted element
— decrement size

value | 3 8 9 7 5 |12
size 6 capacity 10

value | 3 8 7 5 | 12
size 5 capacity 10

Q: In which direction should our array-shifting loop traverse?

A. left-to-right B. right-to-left C. either s fine STUDENT
15

remove solution

// in ArraylList.cpp
void ArraylList::remove(int index) {
// shift left to cover up the slot
for (int 1 = index; i < mySize; i++) {
myElements[i] = myElements[i + 1];

}
myElements[mySize - 1] = 0;
mySize--;

16

Freeing array memory

delete[] name;
e Releases the memory associated with the given array.

e Must be done for all arrays created with new
— Or else the program has a memory leak. (No garbage collector like Java)

— Leaked memory will be released when the program exits, but for long-running
programs, memory leaks are bad and will eventually exhaust your RAM.

int* a = new int[3];

al@] = 42;
a[l] = -5;
al[2] = 17;

for (int i = 0; 1 < 3; i++) {
cout << 1 << ": " << a[i] << endl;
}

delete[] a;

17

Destructor (12.3)

// ClassName .h // ClassName.cpp
~ClassName () ; ClassName: :~ClassName() { ...

e destructor: Called when the object is deleted by the program.

(when the object goes out of { } scope; opposite of a constructor)
— Useful if your object needs to do anything important as it dies:

® saving any temporary resources inside the object
e freeing any dynamically allocated memory used by the object's members

— Does our ArrayList need a destructor? If so, what should it do?

18

Destructor solution

// in ArraylList.cpp
void ArraylList::~ArrayList() {
delete[] myElements;

¥

19

Running out of space

e \What if the client wants to add more than 10 elements?

value | 3 8 9 7 5 112 | 4 8 1 6
size 10 capacity 10

- list.add(75); // add an 11th element

value | 3 |8 |9|7|5|12|4|(8|1|6]| 75
size 11 capacity 20

— Answer: Resize the array to one twice as large.
e Make sure to free the memory used by the old array!

20

Resize solution

// in ArraylList.cpp
void ArraylList::checkResize() {
if (mySize == myCapacity) {
// create bigger array and copy data over
int* bigger = new int[2 * capacity]();
for (int i = ©; 1 < myCapacity; i++) {
bigger[i] = myElements[i];
}
delete[] myElements;
myElements = bigger;
myCapacity *= 2;

21

Problem: size vs. capacity

e What if the client accesses an element past the size?
list.get(7)

value | 3 8 9 7 5
size 5 capacity 10

— Currently the list allows this and returns O.
e |s this good or bad? What (if anything) should we do about it?

22

Private helpers

// in ClassName.h file
private:
returnType name(parameters);

e 3 private member function can be called only by its own class

— your object can call the "helper" function, but clients cannot call it

void ArraylList::checkIndex(int i, int min, int max) {
if (i < min || 1 > max) {
throw "Index out of range";

¥

23

Overflow (extra) slides

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Shallow copy bug (12.7)

e Assighing one list to another causes them to share an array:

ArraylList 1listl;

listl
listl.add(42); size 3
listl.add(-5); .
t 10
listl.add(17); Y
ArrayList list2 = listi; elements | |

list2
size 3
capacity 10
elements /

value | 42 | -5 | 17

e A change to one will affect the other. (That's bad!)

list2.add(88);
list.remove(9);

— Also: When the objects are deleted, the memory is freed twice. (bad)

Deep copy

e To correct the shallow copy bug, we must define:

— a copy constructor (constructor that takes a list as a parameter)
ArraylList(const ArraylList& list);

— an assignment operator (overloaded = op between two lists)
ArraylList& operator =(const ArraylList& list);

e in both of these, we will make a deep copy of the array of elements.

e Rule of Three: In C++, when you define one of these three items in
your class, you probably should define all three:

1) copy constructor 2) assignment operator 3) destructor

26

Forbid copying

e One quick fix is to just forbid your objects from being copied.
— Declare a private copy constructor and = operator in the . h file.
— Don't give them any actual definition/body in the . cpp file.

// ArraylList.h
private:

ArraylList(const ArraylList& list);
ArrayList& operator =(const ArraylList& 1list);

— Now if the client tries 1ist2 = 1istl; it will not compile.

— Solves the shallow copy problem, but restrictive and less usable.

27

Deep copy code

e To support deep copying, write a public copy constructor and =
operator. They share a lot of code, so we suggest a helper:

// ArraylList.cpp

Arraylist: :ArrayList(const ArraylList& other) {
copy(other);

}

ArrayList& ArraylList::operator =(const ArraylList& other) {
delete[] myElements;

copy(other);
return *this; // = returns 'this' so it can be chained

¥

void Arraylist::copy(const ArraylList& other) { // private helper
myCapacity = other.myCapacity;
mySize = other.mySize;
myElements = new int[myCapacity]; // deep copy
for (int 1 = 0; 1 < mySize; i++) {
myElements[i] = other.myElements[i];
}

Template function (14.1-2)

template<typename T>
returntype name(parameters) {
statements;

¥

e Template: A function or class that accepts a type parameter(s).
— Allows you to write a function that can accept many types of data.

— Avoids redundancy when writing the same common operation on
different types of data.

— Templates can appear on a single function, or on an entire class.

— FYI: Java has a similar mechanism called generics.

29

Template func example

template<typename T>

T max(T a, T b) {
if (a < b) { return b; }
else { return a; }

— The template is instantiated each time you use it with a new type.
e The compiler actually generates a new version of the code each time.
e The type you use must have an operator < to work in the above code.

int 1 max(17, 4); // T = int

double d = max(3.1, 4.6); // T = double

string s = max(string("hi"), // T = string
string("bye"));

30

Template class (14.1-2)

* Template class: A class that accepts a type parameter(s).
— In the header and cpp files, mark each class/function as templated.
— Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

s

// ClassName.cpp
template<typename T>
type ClassName: :name(parameters) {

¥

31

Recall: ArraylList.h

class ArraylList {
public:
ArraylList();
~ArraylList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value) const;
int size() const;
string toString() const;

private:
int* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

s

32

Template ArraylList.h

template <typename T> class ArraylList {
public:

ArraylList();

~ArraylList();

void add(T value);

void clear();

T get(int index) const;

void insert(int index, T value);

bool isEmpty() const;

void remove(int index);

void set(int index, T value) const;

int size() const;

string toString() const;

private:
T* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

s

33

Template ArrayList.cpp

template <typename T>
ArraylList<T>::ArraylList() {
myCapacity = 10;
myElements = new T[myCapacity];
mySize = 0;

¥

template <typename T>

void ArraylList<T>::add(T value) {
checkResize();
myElements[mySize] = value;
mySize++;

¥

template <typename T>

T ArraylList<T>::get(int index) const {
checkIndex(index, 0, mySize - 1);
return myElements[index];

34

Template .h and .cpp

e Because of an odd quirk with C++ templates, the separation
between .h header and .cpp implementation must be reduced.

— Either write all the bodies in the .h file (suggested),
— Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname_h
#define _classname_h

template<typename T>
class ClassName

}s
#include "ClassName.cpp"
#endif // _classname h

35

