
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

CS 106X
Arrays;

Implementing a Collection

(ArrayList)

guest presenter:

Marty Stepp (stepp AT cs DOT stanford DOT edu)

reading:

Programming Abstractions in C++,

11.2 - 11.3; 12.1, 12.3, 12.7; 14.1, 14.4

2

Motivation

• So far in this course, we have used many collection classes:

– Vector, Grid, Stack, Queue, Map, Set, HashMap, HashSet, Lexicon, ...

• Now let's explore how they are implemented.

– We will start by implementing our own version of a Vector class.

• To do so, we must learn about arrays and memory allocation.

– After that, we will implement several other collections:

• linked list; binary tree set, map; hash table set, map; prefix tree

(Lexicon); priority queue; graph; ...

3

Arrays (11.3)

type* name = new type[length];

• A dynamically allocated array.

• The variable that refers to the array is a pointer.

• The memory allocated for the array must be manually released,

or else the program will have a memory leak. (>_<)

– Another array creation syntax that we will not use:

type name[length];

• A fixed array; initialized at declaration; can never be resized.

• Stored in a different place in memory; the first syntax uses the stack and

the second uses the heap. (discussed later)

4

Initialized?

type* name = new type[length]; // uninitialized

type* name = new type[length](); // initialize to 0

• If () are written after the array [], it will set all array elements to their
default zero-equivalent value for the data type. (slower)

• If no () are written, the elements are uninitialized, so whatever garbage
values were stored in that memory beforehand will be your elements.

int* a = new int[3];
cout << a[0]; // 2395876
cout << a[1]; // -197630894

int* a2 = new int[3]();
cout << a[0]; // 0
cout << a[1]; // 0

5

How a Vector works

• Inside a Vector is an array storing the elements you have added.

– Typically the array is larger than the data added so far, so that it has

some extra slots in which to put new elements later.

• We call this an unfilled array.

Vector<int> v;
v.add(42);
v.add(-5);
v.add(17); 10capacity3size

0

5

0

6

0

4

0

7

0

8

17

2

0

3

0-542value

910index

6

Exercise

• Let's write a class that implements a growable array of integers.

– We'll call it ArrayList. It will be very similar to the C++ Vector.

– its behavior:

•add(value) insert(index, value)

•get(index), set(index, value)

•size(), isEmpty()

•remove(index)

•indexOf(value), contains(value)

•toString()

...

– The list's size will be the number of elements added to it so far.

• The actual array length ("capacity") in the object may be larger.

We'll start with an array of length 10 by default.

7

ArrayList.h

#ifndef _arraylist_h
#define _arraylist_h
#include <string>
using namespace std;

class ArrayList {
public:

ArrayList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;
string toString() const;

private:
int* myElements; // array of elements
int myCapacity; // length of array
int mySize; // number of elements added

};

#endif

8

Implementing add

• How do you append to the end of a list? list.add(42);

– place the new value in slot number size

– increment size

10capacity6size

12

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

10capacity7size

12

5

42

6

5

4

0

7

0

8

9

2

7

3

083value

910index

9

add solution

// in ArrayList.cpp
void ArrayList::add(int value) {

myElements[mySize] = value;
mySize++;

}

10

Implementing insert

• How do you insert in the middle of a list? list.insert(3, 42);

– shift elements right to make room for the new element

– increment size

Q: In which direction should our array-shifting loop traverse?

A. left-to-right B. right-to-left C. either is fine

10capacity6size

12

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

10capacity7size

5

5

12

6

7

4

0

7

0

8

9

2

42

3

083value

910index

11

insert solution

// in ArrayList.cpp
void ArrayList::insert(int index, int value) {

// shift right to make room
for (int i = mySize; i > index; i--) {

myElements[i] = myElements[i - 1];
}
myElements[index] = value;
mySize++;

}

12

Other members

• Let's implement the following member functions in our list:

– size() - Returns the number of elements in the list.

– get(index) - Returns the value at a given index.

– set(index, value) - Changes the value at the given index.

– isEmpty() - Returns true if list contains no elements.

• (Why bother to write this if we already have a size function?)

– toString() - String of the list such as "{4, 1, 5}".

– operator << - Make the list printable to cout

13

Other members code

// in ArrayList.cpp
int ArrayList::get(int index) {

return myElements[index];
}

void ArrayList::set(int index, int value) {
myElements[index] = value;

}

int ArrayList::size() {
return mySize;

}

bool ArrayList::isEmpty() {
return mySize == 0;

}

14

Other members code

// in ArrayList.cpp
ostream& operator <<(ostream& out, const ArrayList& list) {

out << "{";
if (!list.isEmpty()) {

out << list.get(0);
for (int i = 1; i < list.size(); i++) {

out << ", " << list.get(i);
}

}
out << "}";
return out;

}

string ArrayList::toString() const {
ostringstream out;
out << *this;
return out.str();

}

15

Implementing remove

• How do you remove an element from a list? list.remove(2);

– shift elements left to cover the deleted element

– decrement size

Q: In which direction should our array-shifting loop traverse?

A. left-to-right B. right-to-left C. either is fine

10capacity6size

12

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

10capacity5size

0

5

0

6

12

4

0

7

0

8

7

2

5

3

083value

910index

16

remove solution

// in ArrayList.cpp
void ArrayList::remove(int index) {

// shift left to cover up the slot
for (int i = index; i < mySize; i++) {

myElements[i] = myElements[i + 1];
}
myElements[mySize - 1] = 0;
mySize--;

}

17

Freeing array memory

delete[] name;

• Releases the memory associated with the given array.

• Must be done for all arrays created with new

– Or else the program has a memory leak. (No garbage collector like Java)

– Leaked memory will be released when the program exits, but for long-running

programs, memory leaks are bad and will eventually exhaust your RAM.

int* a = new int[3];
a[0] = 42;
a[1] = -5;
a[2] = 17;
for (int i = 0; i < 3; i++) {

cout << i << ": " << a[i] << endl;
}
...
delete[] a;

18

Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName::~ClassName() { ...

• destructor: Called when the object is deleted by the program.

(when the object goes out of {} scope; opposite of a constructor)

– Useful if your object needs to do anything important as it dies:

• saving any temporary resources inside the object

• freeing any dynamically allocated memory used by the object's members

• ...

– Does our ArrayList need a destructor? If so, what should it do?

19

Destructor solution

// in ArrayList.cpp
void ArrayList::~ArrayList() {

delete[] myElements;
}

20

Running out of space

• What if the client wants to add more than 10 elements?

– list.add(75); // add an 11th element

– Answer: Resize the array to one twice as large.

• Make sure to free the memory used by the old array!

10capacity10size

12

5

4

6

5

4

8

7

1

8

9

2

7

3

683value

910index

6

9

75

10

0

11

0

12

0

13

0

14

0

15

0

16

0

17

0

18

20capacity11size

12

5

4

6

5

4

8

7

1

8

9

2

7

3

083value

1910index

21

Resize solution

// in ArrayList.cpp
void ArrayList::checkResize() {

if (mySize == myCapacity) {
// create bigger array and copy data over
int* bigger = new int[2 * capacity]();
for (int i = 0; i < myCapacity; i++) {

bigger[i] = myElements[i];
}
delete[] myElements;
myElements = bigger;
myCapacity *= 2;

}
}

22

Problem: size vs. capacity

• What if the client accesses an element past the size?

list.get(7)

– Currently the list allows this and returns 0.

• Is this good or bad? What (if anything) should we do about it?

10capacity5size

0

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

23

Private helpers

// in ClassName.h file
private:

returnType name(parameters);

• a private member function can be called only by its own class

– your object can call the "helper" function, but clients cannot call it

void ArrayList::checkIndex(int i, int min, int max) {
if (i < min || i > max) {

throw "Index out of range";
}

}

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Overflow (extra) slides

25

Shallow copy bug (12.7)

• Assigning one list to another causes them to share an array:

ArrayList list1;
list1.add(42);
list1.add(-5);
list1.add(17);
ArrayList list2 = list1;

• A change to one will affect the other. (That's bad!)

list2.add(88);
list.remove(0);

– Also: When the objects are deleted, the memory is freed twice. (bad)

0

5

0

6

0

4

0

7

0

8

17

2

0

3

0-542value

910index

list1

elements

10capacity

3size

list2

elements

10capacity

3size

26

Deep copy

• To correct the shallow copy bug, we must define:

– a copy constructor (constructor that takes a list as a parameter)

ArrayList(const ArrayList& list);

– an assignment operator (overloaded = op between two lists)

ArrayList& operator =(const ArrayList& list);

• in both of these, we will make a deep copy of the array of elements.

• Rule of Three: In C++, when you define one of these three items in

your class, you probably should define all three:

1) copy constructor 2) assignment operator 3) destructor

27

Forbid copying

• One quick fix is to just forbid your objects from being copied.

– Declare a private copy constructor and = operator in the .h file.

– Don't give them any actual definition/body in the .cpp file.

// ArrayList.h
private:

ArrayList(const ArrayList& list);
ArrayList& operator =(const ArrayList& list);

– Now if the client tries list2 = list1; it will not compile.

– Solves the shallow copy problem, but restrictive and less usable.

28

Deep copy code

• To support deep copying, write a public copy constructor and =

operator. They share a lot of code, so we suggest a helper:

// ArrayList.cpp
ArrayList::ArrayList(const ArrayList& other) {

copy(other);
}

ArrayList& ArrayList::operator =(const ArrayList& other) {
delete[] myElements;
copy(other);
return *this; // = returns 'this' so it can be chained

}

void ArrayList::copy(const ArrayList& other) { // private helper
myCapacity = other.myCapacity;
mySize = other.mySize;
myElements = new int[myCapacity]; // deep copy
for (int i = 0; i < mySize; i++) {

myElements[i] = other.myElements[i];
}

}

29

Template function (14.1-2)

template<typename T>
returntype name(parameters) {

statements;
}

• Template: A function or class that accepts a type parameter(s).

– Allows you to write a function that can accept many types of data.

– Avoids redundancy when writing the same common operation on

different types of data.

– Templates can appear on a single function, or on an entire class.

– FYI: Java has a similar mechanism called generics.

30

Template func example

template<typename T>
T max(T a, T b) {

if (a < b) { return b; }
else { return a; }

}

– The template is instantiated each time you use it with a new type.

• The compiler actually generates a new version of the code each time.

• The type you use must have an operator < to work in the above code.

int i = max(17, 4); // T = int
double d = max(3.1, 4.6); // T = double
string s = max(string("hi"), // T = string

string("bye"));

31

Template class (14.1-2)

• Template class: A class that accepts a type parameter(s).

– In the header and cpp files, mark each class/function as templated.

– Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

...
};

// ClassName.cpp
template<typename T>
type ClassName::name(parameters) {

...
}

32

Recall: ArrayList.h

class ArrayList {
public:

ArrayList();
~ArrayList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value) const;
int size() const;
string toString() const;

private:
int* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

};

33

Template ArrayList.h

template <typename T> class ArrayList {
public:

ArrayList();
~ArrayList();
void add(T value);
void clear();
T get(int index) const;
void insert(int index, T value);
bool isEmpty() const;
void remove(int index);
void set(int index, T value) const;
int size() const;
string toString() const;

private:
T* elements;
int mysize;
int capacity;
void checkIndex(int index, int min, int max) const;
void checkResize();

};

34

Template ArrayList.cpp

template <typename T>
ArrayList<T>::ArrayList() {

myCapacity = 10;
myElements = new T[myCapacity];
mySize = 0;

}

template <typename T>
void ArrayList<T>::add(T value) {

checkResize();
myElements[mySize] = value;
mySize++;

}

template <typename T>
T ArrayList<T>::get(int index) const {

checkIndex(index, 0, mySize - 1);
return myElements[index];

}

...

35

Template .h and .cpp

• Because of an odd quirk with C++ templates, the separation

between .h header and .cpp implementation must be reduced.

– Either write all the bodies in the .h file (suggested),

– Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname_h
#define _classname_h

template<typename T>
class ClassName {

...
};

#include "ClassName.cpp"

#endif // _classname_h

