Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics:

= Last week, with Marty Stepp:
» Making your own class
> Arrays in C++
= This week: Memory and Pointers
> Revisit some topics from last week
» Deeper look at what a pointer is
« Hexadecimal!
Dynamic Memory allocation
Linked nodes
Linked List data structure
(if we have time) Binary tree data structure

N

N

N

N

Stanford University

Arrays

(revisit from last week)

Stanford University

Arrays (11.3)

type* name = new type|[length];

» Adynamically allocated array.
> The variable that refers to the array is a pointer.
The memory allocated for the array must be manually releasedﬁ

else the program will have a memory leak. (>_<)
“ FOr 106X, | would like you to know this

syntax and be able to diagram what it

= Another array creation syntax that we will not use*: does, but Marty Stepp was rightin that
we won'’t generally be using it in code
type name[length]; you write (for style/design reasons).

» Afixed array; initialized at declaration; can never be resized.

» Stored in a different place in memory; the first syntax uses the
stack and the second uses the heap. (discussed later)

Stanford University

Arrays on the stack and heap

void myfunction() {
int x = 5;

int y;
int arr[2];
arr[1] = 3;

int *heapArr = new int[2];
// bad -- memory leak coming!

What happens when myfunction() returns?

Memory

0x0

main()

Imyfunction() .

Y.

BN

arr:
heapArr:| |

Stanford University

ArrayList

(revisit from last week)

Stanford University

» Releases the memory associated with the given array
» Must be done for all arrays created with new

* Or else the program has a memory leak. (No garbage collector
like Java)

» Leaked memory will be released when the program exits, but for
long-running programs, memory leaks are bad and will
eventually exhaust your RAM

int* a £ new int[3];
a[@] = 42;
a[l] = 79y
al[2] = 17;

delete[] a;

Stanford University

Destructor (12.3)

// ClassName .h // ClassName.cpp
~ClassName () ; ClassName: :~ClassName() { ...

destructor: Called when the object is deleted by the program.
(when the object goes out of {} scope; opposite of a constructor)

= Useful if your object needs to do anything important as it dies:
» saving any temporary resources inside the object

» freeing any dynamically allocated memory used by the object's
members

> ...
= Does our ArraylList need a destructor? If so, what should it do?

Stanford University

Destructor solution

// in ArraylList.cpp

ArrayList::ArraylLi {
myElements = new int[10]();
mySize = 0;

myCapacity = 10;

voi ist::~ArrayList() {
delete[] myElements;
}

Stanford University

Running out of space

What if the client wants to add more than 10 elements?

value | 3 8 9 7 5112 | 4 8 1 6
size 10 capacity 10

= list.add(75); // add an 11th element

value | 3 [8 (9|7(5]|12|4|8|1|6]| 75
size 11 capacity 20

= Answer: Resize the array to one twice as large.
» Make sure to free the memory used by the old array!

Stanford University

Resize solution

// in ArraylList.cpp
void ArraylList::checkResize() {
if (mySize == myCapacity) {
// create bigger array and copy data over
int* bigger = new int[2 * capacity]();
for (int i = @; 1 < myCapacity; i++) {
bigger[i] = myElements[i];
}
delete[] myElements;
myElements = bigger;
myCapacity *= 2;

Stanford University

Heap memory works like a hotel
registration desk

(Congratulations Golden Globe winner Grand Budapest Hotel)

Stanford University

Only a creepy killer would access a hotel room
that isn’t theirs (either never was, or was but
checked out already)

y

(Another great film about unusual people who work at hotels)

Stanford University

Pointers

Taking a deeper look at the syntax of that array on the heap

Stanford University

Memory addresses: the basics
Stack

0x28F620 12

= When you declare a variable, it is
necessarily stored somewhere in memory

= You can ask for any variable's memory
address with the & operator

= Memory addresses are usually written as
hexadecimal (base-16 or “hex”) numbers

= Ex: 0x2g8F520

= Prefix “Ox” is a visual cue that this is a hex
number (not really part of the number)

Heap

Ox0

Stanford University

Examples of the & operator

int X = 42;
int Y
int a[4] = {91, -3, 85, 17};
double d1l = 3.0;
double d2 = 3.2;
cout << x << endl;
cout << &x << endl;
cout << y << endl;
cout << &y << endl;
cout << a << endl;
cout << &a[0@] << endl;
cout << &a[1l] << endl;
cout << &a[2] << endl;

cout << &d << endl;

Stanford University

Pointer arithmetic

Surprise! operators +, -, ++, -- workon pointers

= |ncrementing a T* (pointer to type T) by 1 moves the pointer
forward in memory to the next T

Stanford University

Thinking about what we just learned...

When we add 1 to a pointer, how much does the address change?

int X = 42;
int V; A. You can’t do ++ on a pointer to int

int al[4] {91, -3, 85, 17}; BWHadds 1, of
= 3.0; course!

double di

1nt* pi = &x; C c. pi++adds 4 and pd++ adds 4
double* pd = &d1; @ﬂther/none/moret an one

cout << pi << endl;

pit++; This is why the language has you specify
cout << pi << endl; double* and int* rather than just having a
cout << pd << endl; generic* type (although it does have one of
pd++; those too—void*).

cout << pd << endl;

Stanford University

Data types in C++

Each unique memory address describes one byte of memory space
(1byte = 8bits, or 8 1's and 0’s)

» We say memory is “byte addressable”

int addresses are 4 apart (32bits)

double addresses are 8 apart (64bits)

The above is true on this system--may differ on other systems

» Of course C++ doesn't impose a standard, because that would be
safe and convenient, and that’s not how we roll....

Bonus question: do int* and double* take up the (A) SAME or (B)
DIFFERENT amounts of space?

Stanford University

Memory mano

24 look: Arrays on the stack and heap [EyfiRcion0 ”
void myfunction() { y:

int x = 5; '

int y;

int arr[2]; arr:

arr[1] = 3; heapArr:

int *heapArr = new int[2];

// bad -- memory leak coming!

0x0

Stanford University

Arrays are actually pointers

Surprise!

= |f you have a pointer p (see declaration of p below), you can use p[k]
syntax to access memory k slots away from p (according to the size
of the type pointed to)
> p[k] is equivalent to *(p+k)

= (An array variable is really just a pointer to the array's first element, and so pointers
and array variables work the same for indexing.)

int a[4] = {91, -3, 85, 17}; What prints here?
;ﬁ’i‘ E ;a; A. 26, 26
pre; B. 26, 85
:(()gt+<§)*£ ;é;endl; C.85, 26
ont BBl Sqd 06585

Stanford University

In the news: Heartbleed

= Last spring, security experts warned that
users of thousands of major websites
needed to change their passwords due to
potential exposure caused by the
“Heartbleed” vulnerability

= Heartbleed exploited a buffer overrun
bug in OpenSSL
» SSL is the layer that secures web
interactions, i.e., it's what make the “s”
in “https://” mean something

In the news: Heartbleed

The protocol allows you to send
“heartbeat” messages, which basically
say:

)

>

Unfortunately, the software also let you
send messages like this:

)

)

Are you still there? If you are,
repeat this word back to me:
“hello” [0x0005 bytes].

Each char is one byte, so 5 letters

Are you still there? If you are,
repeat this word back to me:
“hello” [OxXFFFF bytes].

That’'s 65535 bytes—much more than
the length of “hello”!

So the software would continue for-
looping past the end of the “hello”
array, sending information back

Which causes an error, right?
RIGHT?? Turns out, no.

Software engineering tip:

Initialize pointers always! If not to a useful value, then at least to NULL.
NULL initialization forces your program to crash (this is a good thing,
really!) if you try to use the pointer without assigning it a proper value

Common error: Prevention:

int* foo; int* foo E NULL;i
Stack

..never initialized..

ﬁoo = 555; | *f00 = 555;

0x28F620

nothole__ Badiger 001, Stanford University

http://en.wikipedia.org/wiki/File:Operation_Upshot-Knothole_-_Badger_001.jpg

