
Programming Abstractions

Cynthia Lee

C S 1 0 6 X

Topics:

 Last week, with Marty Stepp:

› Making your own class

› Arrays in C++

 This week: Memory and Pointers

› Revisit some topics from last week

› Deeper look at what a pointer is

• Hexadecimal!

› Dynamic Memory allocation

› Linked nodes

› Linked List data structure

› (if we have time) Binary tree data structure

2

Arrays
(revisit from last week)

Arrays (11.3)

type* name = new type[length];

› A dynamically allocated array.

› The variable that refers to the array is a pointer.

› The memory allocated for the array must be manually released,

or else the program will have a memory leak. (>_<)

 Another array creation syntax that we will not use*:

type name[length];

› A fixed array; initialized at declaration; can never be resized.

› Stored in a different place in memory; the first syntax uses the

stack and the second uses the heap. (discussed later)

* For 106X, I would like you to know this

syntax and be able to diagram what it

does, but Marty Stepp was right in that

we won’t generally be using it in code

you write (for style/design reasons).

Arrays on the stack and heap

void myfunction() {

int x = 5;

int y;

int arr[2];

arr[1] = 3;

int *heapArr = new int[2];

// bad -- memory leak coming!

}

What happens when myfunction() returns?

Memory
main()

x:

y:

0x0

myfunction()

arr:

heapArr:

ArrayList
(revisit from last week)

Freeing array memory

delete[] name;

› Releases the memory associated with the given array

› Must be done for all arrays created with new

• Or else the program has a memory leak. (No garbage collector

like Java)

• Leaked memory will be released when the program exits, but for

long-running programs, memory leaks are bad and will

eventually exhaust your RAM

int* a = new int[3];
a[0] = 42;
a[1] = -5;
a[2] = 17;
...

delete[] a;

Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName::~ClassName() { ...

destructor: Called when the object is deleted by the program.

(when the object goes out of {} scope; opposite of a constructor)

 Useful if your object needs to do anything important as it dies:

› saving any temporary resources inside the object

› freeing any dynamically allocated memory used by the object's

members

› …

 Does our ArrayList need a destructor? If so, what should it do?

Destructor solution

// in ArrayList.cpp

ArrayList::ArrayList() {
myElements = new int[10]();
mySize = 0;
myCapacity = 10;

}

void ArrayList::~ArrayList() {
delete[] myElements;

}

Running out of space

What if the client wants to add more than 10 elements?

 list.add(75); // add an 11th element

 Answer: Resize the array to one twice as large.

› Make sure to free the memory used by the old array!

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 4 8 1 6

size 10 capacity 10

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

value 3 8 9 7 5 12 4 8 1 6 75 0 0 0 0 0 0 0 0 0

size 11 capacity 20

Resize solution

// in ArrayList.cpp
void ArrayList::checkResize() {

if (mySize == myCapacity) {
// create bigger array and copy data over
int* bigger = new int[2 * capacity]();
for (int i = 0; i < myCapacity; i++) {

bigger[i] = myElements[i];
}
delete[] myElements;
myElements = bigger;
myCapacity *= 2;

}
}

Heap memory works like a hotel
registration desk

(Congratulations Golden Globe winner Grand Budapest Hotel)

Only a creepy killer would access a hotel room
that isn’t theirs (either never was, or was but

checked out already)

(Another great film about unusual people who work at hotels)

Pointers
Taking a deeper look at the syntax of that array on the heap

Memory addresses: the basics

 When you declare a variable, it is

necessarily stored somewhere in memory

 You can ask for any variable's memory

address with the & operator

 Memory addresses are usually written as

hexadecimal (base-16 or “hex”) numbers

 Ex: 0x28F620

 Prefix “0x” is a visual cue that this is a hex

number (not really part of the number)

Heap

Stack

0x0

0x28F620 12

Examples of the & operator

int x = 42;
int y;
int a[4] = {91, -3, 85, 17};
double d1 = 3.0;
double d2 = 3.2;

cout << x << endl; // 42
cout << &x << endl; // 0x7f8e20
cout << y << endl; // 17
cout << &y << endl;
cout << a << endl; // 0x7f8e24
cout << &a[0] << endl; // 0x7f8e28
cout << &a[1] << endl; // 0x7f8e2c
cout << &a[2] << endl;
cout << &d << endl; // 0x7f8e30

Pointer arithmetic

Surprise! operators +, -, ++, -- work on pointers

 Incrementing a T* (pointer to type T) by 1 moves the pointer
forward in memory to the next T

When we add 1 to a pointer, how much does the address change?

Thinking about what we just learned…

int x = 42;
int y;
int a[4] = {91, -3, 85, 17};
double d1 = 3.0;
...
int* pi = &x;
double* pd = &d1;
cout << pi << endl;
pi++;
cout << pi << endl;
cout << pd << endl;
pd++;
cout << pd << endl;

A. You can’t do ++ on a pointer to int

B. pi++ adds 1 and pd++ adds 1, of
course!

C. pi++ adds 4 and pd++ adds 4

D. Other/none/more than one

This is why the language has you specify
double* and int* rather than just having a
generic* type (although it does have one of
those too—void*).

Data types in C++

 Each unique memory address describes one byte of memory space

(1byte = 8bits, or 8 1’s and 0’s)

› We say memory is “byte addressable”

 int addresses are 4 apart (32bits)

 double addresses are 8 apart (64bits)

 The above is true on this system--may differ on other systems

› Of course C++ doesn't impose a standard, because that would be

safe and convenient, and that’s not how we roll....

 Bonus question: do int* and double* take up the (A) SAME or (B)

DIFFERENT amounts of space?

2nd look: Arrays on the stack and heap

void myfunction() {

int x = 5;

int y;

int arr[2];

arr[1] = 3;

int *heapArr = new int[2];

// bad -- memory leak coming!

}

Memory
main()

x:

y:

0x0

myfunction()

arr:

heapArr:

Arrays are actually pointers

Surprise!
 If you have a pointer p (see declaration of p below), you can use p[k]

syntax to access memory k slots away from p (according to the size
of the type pointed to)
› p[k] is equivalent to *(p+k)

 (An array variable is really just a pointer to the array's first element, and so pointers
and array variables work the same for indexing.)

...
int a[4] = {91, -3, 85, 17};
...
int* p = a;
p[1] = 5;
p++;
cout << *p << endl;
*(p + 2) = 26;
cout << p[2] << endl;
cout << a[2] << endl;

What prints here?

A. 26, 26

B. 26, 85

C.85, 26

D.85, 85

In the news: Heartbleed

 Last spring, security experts warned that
users of thousands of major websites
needed to change their passwords due to
potential exposure caused by the
“Heartbleed” vulnerability

 Heartbleed exploited a buffer overrun
bug in OpenSSL

› SSL is the layer that secures web
interactions, i.e., it’s what make the “s”
in “https://” mean something

In the news: Heartbleed
 The protocol allows you to send

“heartbeat” messages, which basically
say:

› Are you still there? If you are,
repeat this word back to me:
“hello” [0x0005 bytes].

› Each char is one byte, so 5 letters

 Unfortunately, the software also let you
send messages like this:

› Are you still there? If you are,
repeat this word back to me:
“hello” [0xFFFF bytes].

› That’s 65535 bytes—much more than
the length of “hello”!

› So the software would continue for-
looping past the end of the “hello”
array, sending information back

› Which causes an error, right?
RIGHT?? Turns out, no.

Common error:

int* foo;

…never initialized…

*foo = 555;

Prevention:

int* foo = NULL;

…

*foo = 555;

Image is in the public domain: http://en.wikipedia.org/wiki/File:Operation_Upshot-Knothole_-_Badger_001.jpgHeap

Stack

0x28F620

Software engineering tip:
Initialize pointers always! If not to a useful value, then at least to NULL.
NULL initialization forces your program to crash (this is a good thing,
really!) if you try to use the pointer without assigning it a proper value

http://en.wikipedia.org/wiki/File:Operation_Upshot-Knothole_-_Badger_001.jpg

