Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics this week:

= Memory and Pointers

» Dereference operator: *

> Dynamic Memory with classes
* The -> operator

» Linked nodes

» Linked List data structure

= TODAY IS THE LAST DAY OF TOPICS FOR THE MIDTERM

Stanford University

Heap memory works like a hotel
registration desk

(Congratulations Golden Globe winner Grand Budapest Hotel)

Stanford University

Only a creepy killer would access a hotel room
that isn’t theirs (either never was, or was but
checked out already)

|

(Another great film about unusual people who work at hotels)

Stanford University

new and delete Hotel Analogy

delete is like checking out of a hotel
> You say that you're checking out and give back your key
> Now the hotel can give that room to somebody else

= Do NOT re-enter the room (awkward and/or lawsuit)

» Sometimes happens if you have two guests in the same room (two
pointers pointing to the same thing) and one checks out (deletes) but
the other keeps it

= Do NOT check out twice (redundant)

» Sometimes happens if you have two guests in the same room and
they both check out

= Do NOT lose your key! (stuck forever)

> You can’t check out unless you have it (you can’t call delete unless
you have the pointer--memory leak)

Stanford University

Dynamlc memaory allocation How many of these lines of code
could legally be the next line?

int * pl = new int; //0x12 ——deletep2—

*pl = 5; de 3; —"

int * p2 = new int; //0x4] = 5

int * p3 = new int; //0x20 o ;zg l !E 5 H’E,

*p3 = 8; ’

*pl = *p2; A.0-2 of them

cout << pl << “ “ << *pl << endl; B. 3 of them

pl = p2; C.4 of them

out << pl << “ “ << *pl << endl; D.5+ of them

delete pl; /

/what could go here?

Stanford University

Dynamic memory allocation

int * pl =@int; //0x12
*pl = 5;
int * p2 = new int; //0x4
*p2 = 7;
int * p3 = new int; //0x20
*p3 = 8;
“p1 = (xp2;) 7]
cout << pl << " " << *pl << endl;
pl =(p2/
out << pl << " " K< *pl << endl;
delete pl;

//what can go here?

Stanford University

Pointers

Dereference operator

Stanford University

Dereference operator 7

You’ve learned the address-of operator &:

int X = 5;

int *xAddress = &x; X *
cout << xAddress << endl; // ©Ox28FE50
= |t tells you the address of any variable

\\/\-)\f 1= ? N

It has a partner, the dereference operator *:

int X = 5;

int *xAddress = &x; // this * is not dereference op!
cout << *xAddress << endl; // 5

*xAddress = 7; '>[&<%%*Ytﬁ0 = é{\j‘\
cout << x << endl; /] 7

= |t tells you what the pointer points to
> Follows the “arrow” to the end, for reading or writing the value

xAddress:

Stanford University

Dereferencing an uninitialized pointer

int *randAddress; // uninitialized!
cout << randAddress << endl; // [prints nonsense]

cout << *randAddress << endl; // ??? l-:

= There is no problem printing an uninitialized pointer

> Will print nonsense, but do so safely (no danger of crash)

= There IS a problem with dereferencing an uninitialized pointer \\

> Example above may print nonsense

xAddress: \

2?7
> Or may attempt to print a restricted area—CRASH!

> The fact that either is possible is a huge problem for debugging

Stanford University

Software engineering tip:

Initialize pointers always.

= |f not to a useful value, then at least to NULL.

= NULL forces your program to crash (this is a good thing, really!) if you try
to dereference

Common error:

int* foo;

*foo = 555;

Ox28F620

Stack

Heap

*foo = 555;

Prevention:
int* foo = NULL;

Stanford University

Stack and Heap Memory with classes

Quickly returning to memory diagrams and our ArrayList implementation
Introducing the -> operator

Stanford University

Stack and Heap Memory with classes

Stack

LA ey
Wy MCD

// in ArraylList.h
class ArraylList {
public:

private:
int* myElements; <

int myCapacity;

int m¥Size§
s

// in arraylistclient.cpp

int main() {
ArrayList myL1;
ArrayLisT *m
delete mylL2;
return 9;

N St

= new Arraylist;
// note no []

Stanford University

Stack and Heap Memory with Stanford Library ADTs

= Qur Stanford Library data structures work in a similar way
> You can choose to put instances on the Stack or Heap
» Either way, they internally put large data structures on the Heap
» Constructor allocates heap memory with “new”
» Destructor frees heap memory with “delete”

Stanford University

Useful shortcut for pointers to objects: -> operator

// in arraylistclient.cpp
int main() {
ArrayList mylL1;
myL1l.add(3);
ArraylList *myL2 = new Arraylist;

(*myL2).add(3); // clunky syntax
myL2->add(3); // equivalent version with ->
delete mylL2;

return 0;

= The -> operator is just shorthand for combining dereference and
member variable/function access (works for classes and structs)

Move *myMarbleMove = new Move(l, 3, 1, 5);
myMarbleMove->startRow = 2;
myMarbleMove->startCol = 4;

Stanford University

Linked Nodes

A great way to exercise your pointer understanding

Stanford University

Linked Node

struct LinkNode {
int data;
LinkNode *next;

}

= We can chain these together in memory:

node

P

data | next
10

data [next

75

LinkNode *nodel = new LinkNode;
nodel->data = 10;

nodel->next = NULL;
LinkNode *node = new LinkNode;

node->data
node->next

10;
nodel;

// complete the code to make picture

Stanford University

FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!

Stanford University

List code example: Draw a plcture'

7 | struct LinkNode {
data |next data | next int data;
Before: front I 19 20 LinkNode *next;
}

front->next- ->next = new LinkNode;
front->next- >next >data = 40;

. data | next data | next | 7
A. After: fronts | data | next
10 40 20

el data | next data | next data next

front™ 0 0 \A(/\ \(\K\T\ U\/Q Mj(

C. Using “next” that is NULL gives error
D. Other/none/more than one

Stanford University

List code example: Draw a picture!
struct LinkNode {

Bef front—> data | next data | next data | next | int data;
etore. LinkNode *next;

}

Write code that will put these in the reverse
order.

Stanford University

