
Programming Abstractions

Cynthia Lee

C S 106X

Topics this week:

 Memory and Pointers

› Revisit some topics from last week

› Deeper look at what a pointer is

• Hexadecimal!

• Address-of operator: &

› Dynamic Memory allocation

› Dereference operator: *

› Dynamic Memory with classes

• The -> operator

› Linked nodes

› Linked List data structure

› (if we have time) Binary tree data structure

 TODAY IS THE LAST DAY OF TOPICS FOR THE MIDTERM

2

Heap memory works like a hotel
registration desk

(Congratulations Golden Globe winner Grand Budapest Hotel)

Only a creepy killer would access a hotel room
that isn’t theirs (either never was, or was but

checked out already)

(Another great film about unusual people who work at hotels)

new and delete Hotel Analogy

delete is like checking out of a hotel

› You say that you’re checking out and give back your key

› Now the hotel can give that room to somebody else

 Do NOT re-enter the room (awkward and/or lawsuit)

› Sometimes happens if you have two guests in the same room (two
pointers pointing to the same thing) and one checks out (deletes) but
the other keeps it

 Do NOT check out twice (redundant)

› Sometimes happens if you have two guests in the same room and
they both check out

 Do NOT lose your key! (stuck forever)

› You can’t check out unless you have it (you can’t call delete unless
you have the pointer--memory leak)

Dynamic memory allocation

int * p1 = new int; //0x12

*p1 = 5;

int * p2 = new int; //0x4

*p2 = 7;

int * p3 = new int; //0x20

*p3 = 8;

*p1 = *p2;

cout << p1 << “ “ << *p1 << endl;

p1 = p2;

cout << p1 << “ “ << *p1 << endl;

delete p1;

//what could go here?cause we need that

cout << *p3 <<

endl;

How many of these lines of code

could legally be the next line?
delete p2;
delete p3;
*p1 = 10;
p1 = p3;
cout << p1 << endl;
cout << *p2 << endl;

A. 0-2 of them

B. 3 of them

C.4 of them

D.5+ of them

Dynamic memory allocation

int * p1 = new int; //0x12

*p1 = 5;

int * p2 = new int; //0x4

*p2 = 7;

int * p3 = new int; //0x20

*p3 = 8;

*p1 = *p2;

cout << p1 << “ “ << *p1 << endl;

p1 = p2;

cout << p1 << “ “ << *p1 << endl;

delete p1;

//what can go here?cause we need that

cout << *p3 <<

endl;

p1

p2

stack heap

p3

Pointers
Dereference operator

Dereference operator

You’ve learned the address-of operator &:

int x = 5;

int *xAddress = &x;

cout << xAddress << endl; // 0x28FE50

 It tells you the address of any variable

It has a partner, the dereference operator *:

int x = 5;

int *xAddress = &x; // this * is not dereference op!

cout << *xAddress << endl; // 5

*xAddress = 7;

cout << x << endl; // 7

 It tells you what the pointer points to
› Follows the “arrow” to the end, for reading or writing the value

5x:

xAddress:

Dereferencing an uninitialized pointer

int *randAddress; // uninitialized!

cout << randAddress << endl; // [prints nonsense]

cout << *randAddress << endl; // ???

 There is no problem printing an uninitialized pointer
› Will print nonsense, but do so safely (no danger of crash)

 There IS a problem with dereferencing an uninitialized pointer
› Example above may print nonsense

› Or may attempt to print a restricted area—CRASH!

› The fact that either is possible is a huge problem for debugging

???

xAddress:

Common error:

int* foo;

…

*foo = 555;

Prevention:

int* foo = NULL;

…

*foo = 555;

Heap

Stack

0x28F620

Software engineering tip:

Initialize pointers always.

 If not to a useful value, then at least to NULL.

 NULL forces your program to crash (this is a good thing, really!) if you try

to dereference

Stack and Heap Memory with classes
Quickly returning to memory diagrams and our ArrayList implementation

Introducing the -> operator

Stack and Heap Memory with classes

// in ArrayList.h
class ArrayList {
public:

…
private:

int* myElements;
int myCapacity;
int mySize;

};

// in arraylistclient.cpp
int main() {

ArrayList myL1;
ArrayList *myL2 = new ArrayList;
delete myL2; // note no []
return 0;

}

Stack Heap

Stack and Heap Memory with Stanford Library ADTs

 Our Stanford Library data structures work in a similar way

› You can choose to put instances on the Stack or Heap

› Either way, they internally put large data structures on the Heap

› Constructor allocates heap memory with “new”

› Destructor frees heap memory with “delete”

Useful shortcut for pointers to objects: -> operator

// in arraylistclient.cpp
int main() {

ArrayList myL1;
myL1.add(3);
ArrayList *myL2 = new ArrayList;
(*myL2).add(3); // clunky syntax
myL2->add(3); // equivalent version with ->
delete myL2;
return 0;

}

 The -> operator is just shorthand for combining dereference and

member variable/function access (works for classes and structs)

Move *myMarbleMove = new Move(1, 3, 1, 5);
myMarbleMove->startRow = 2;
myMarbleMove->startCol = 4;

Linked Nodes
A great way to exercise your pointer understanding

Linked Node

struct LinkNode {
int data;
LinkNode *next;

}

 We can chain these together in memory:

LinkNode *node1 = new LinkNode; // complete the code to make picture
node1->data = 10;
node1->next = NULL;
LinkNode *node = new LinkNode;
node->data = 10;
node->next = node1;

data next

10

data next

75 NULLnode

FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!

List code example: Draw a picture!

Before:

front->next->next = new LinkNode;

front->next->next->data = 40;

A. After:

B. After:

C. Using “next” that is NULL gives error

D. Other/none/more than one

data next

10

data next

20 NULLfront

data next

10

data next

40
front

data next

20 NULL

data next

10

data next

20
front

data next

40 NULL

struct LinkNode {
int data;
LinkNode *next;

}

List code example: Draw a picture!

Before:

Write code that will put these in the reverse
order.

struct LinkNode {

int data;

LinkNode *next;

}

data next

10

data next

20
front

data next

40 NULL

