
Programming Abstractions

Cynthia Lee

C S 106X

Topics this week:

 Memory and Pointers

› Revisit some topics from last week

› Deeper look at what a pointer is

• Hexadecimal!

• Address-of operator: &

› Dynamic Memory allocation

› Dereference operator: *

› Dynamic Memory with classes

• The -> operator

› Linked nodes

› Linked List data structure

› (if we have time) Priority Queue and Heap data structure

 TODAY’S TOPICS NOT ON THE MIDTERM

2

List code example: Draw a picture!

Before:

front->next->next = new LinkNode();

front->next->next->data = 40;

A. After:

B. After:

C. Using “next” that is NULL gives error

D. Other/none/more than one

data next

10

data next

20 NULLfront

data next

10

data next

40
front

data next

20 NULL

data next

10

data next

20
front

data next

40 NULL

struct ListNode {
ListNode(int d = 0,

ListNode *n = NULL) {
data = d;
next = n;

}
int data;
ListNode *next;

}

FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!

Linked List Data Structure
Putting the ListNode to use

A LinkedList class

Let's write a collection class named LinkedList.

 Has the same public members as ArrayList, Vector, etc.

› add, clear, get, insert, isEmpty, remove, size, toString

 The list is internally implemented as a chain of linked nodes

› The LinkedList keeps a pointer to its front node as a field

› NULL is the end of the list; a NULL front signifies an empty list

front

add(value)
insert(index, value)
remove(index)
size()
toString()
...

LinkedList

ListNode ListNode ListNode
data next

42

data next

-3

data next

17

element 0 element 1 element 2

Traversing a list? (BUG version)

What's wrong with this approach to traverse and print the list?

while (list != NULL) {

cout << list->data << endl;
list = list->next; // move to next node

}

 It loses the linked list as it is printing it!

data next

10

data next

990
list

...

data next

20

Traversing a list (12.2) (bug fixed version)

The correct way to print every value in the list:

ListNode* current = list;
while (current != NULL) {

cout << current->data << endl;
current = current->next; // move to next node

}

 Changing current does not damage the list.

data next

10

data next

990
list

...

data next

20

LinkedList.h

class LinkedList {
public:

LinkedList();
~LinkedList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;

private:
ListNode* front;

};

front =

LinkedList

Implementing add

// Appends the given value to the end of the list.
void LinkedList::add(int value) {

...
}

 What pointer(s) must be changed to add a node to the end of

a list?

 What different cases must we consider?

front =
data next

42

data next

-3

data next

17

element 0 element 1 element 2

Case 1: Add to empty list

Before adding 20: After:

 We must create a new node and attach it to the list.

 For an empty list to become non-empty, we must change

front.

front = front =
data next

20

element 0

Case 2: Non-empty list

Before adding value 20 to end of list:

After:

front =
data next

42

data next

-3

front =
data next

42

data next

-3

data next

20

element 0 element 1 element 2

element 0 element 1

Don't fall off the edge!

Must modify the next pointer of the last node.

 Where should current be pointing, to add 20 at the end?

Q: What loop test will stop us at this place in the list?

A. while (current != NULL) { ...

B. while (front != NULL) { ...

C. while (current->next != NULL) { ...

D. while (front->next != NULL) { ...

front =
data next

42

data next

-3

element 0 element 1

Code for add

// Adds the given value to the end of the list.
void LinkedList::add(int value) {

if (front == NULL) {
// adding to an empty list
front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = front;
while (current->next != NULL) {

current = current->next;
}
current->next = new ListNode(value);

}
}

Implementing get

// Returns value in list at given index.
int LinkedList::get(int index) {

...
}

front =
data next

42

data next

-3

data next

17

element 0 element 1 element 2

Code for get

// Returns value in list at given index.
// Precondition: 0 <= index < size()
int LinkedList::get(int index) {

ListNode* current = front;
for (int i = 0; i < index; i++) {

current = current->next;
}
return current->data;

}

Implementing insert

// Inserts the given value at the given index.
void LinkedList::insert(int index, int value) {

...
}

front =
data next

42

data next

-3

data next

17

element 0 element 1 element 2

Inserting into a list

Before inserting element at index 2:

After:

Q: How many times to advance current to insert at index i ?

A. i - 1 B. i C. i + 1 D. none of the above

front =
data next

48

data next

-3

data next

17

element 0 element 1 element 2

front =
data next

48

data next

-3

data next

22

element 0 element 1 element 2

data next

17

element 3

Code for insert

// Inserts the given value at the given index.
// Precondition: 0 <= index <= size()
void LinkedList::insert(int index, int value) {

if (index == 0) {
// adding to an empty list
front = new ListNode(value, front);

} else {
// inserting into an existing list
ListNode* current = front;
for (int i = 0; i < index - 1; i++) {

current = current->next;
}
current->next =

new ListNode(value, current->next);
}

}

Implementing remove

// Removes value at given index from list.
void LinkedList::remove(int index) {

...
}

 What pointer(s) must be changed to remove a node from a

list?

 What different cases must we consider?

front =
data next

48

data next

-3

data next

22

element 0 element 1 element 2

data next

17

element 3

Removing from a list

Before removing element at index 2:

After:

Where should current be pointing?
How many times should it advance from front?

front =
data next

48

data next

-3

data next

22

element 0 element 1 element 2

data next

22

trash

data next

17

element 3

front =
data next

48

data next

-3

data next

17

element 0 element 1 element 2

Removing from front

Before removing element at index 0:

After:

To remove the first node, we must change front.

front =
data next

-3

data next

20

front =
data next

42

data next

-3

data next

20

element 0 element 1 element 2

element 0 element 1

data next

42

trash

Removing the only element

Before: After:

 We must change the front field to store NULL instead of a

node.

 Do we need a special case to handle this?

front = front =
data next

20

element 0

Code for remove

// Removes value at given index from list.
// Precondition: 0 <= index < size()
void LinkedList::remove(int index) {

ListNode* trash;
if (index == 0) { // removing first element

trash = front;
front = front->next;

} else { // removing elsewhere in the list
ListNode* current = front;
for (int i = 0; i < index - 1; i++) {

current = current->next;
}
trash = current->next;
current->next = current->next->next;

}
delete trash;

}

Other list features

Add the following public members to the LinkedList:

 size()

 isEmpty()

 set(index, value)

 clear()

 toString()

Add a size field to the list to return its size more efficiently.

Add preconditions and exception tests as appropriate.

Priority Queue
Emergency Department waiting room operates as a priority queue: patients

are sorted according to priority (urgency), not “first come, first serve” (in

computer science, “first in, first out” or FIFO).

Image is in the public domain.

http://commons.wikimedia.org/wiki/File:Columbus_Fire_Medic_7.JPG

Some priority queue implementation options

Unsorted linked list

 Insert new element in front

 Remove by searching list for highest-priority item

Sorted linked list

 Always insert new elements where they go in priority-sorted order

 Remove from front (will be highest-priority because sorted)

data next

75

data next

8
head

data next

20 NULL

data next

8

data next

20
head

data next

75 NULL

Unsorted linked list

Add is FAST

 Just throw it in the list at the front

 O(1)

Remove/peek is SLOW

 Hard to find item the highest priority

item—could be anywhere

 O(N)

Priority queue implementations

T
h

is
 f
ile

 i
s
 l
ic

e
n

s
e
d

 u
n

d
e
r

th
e

C
re

a
ti
v
e
 C

o
m

m
o
n

s
A

tt
ri

b
u

ti
o
n

-S
h

a
re

 A
lik

e
 3

.0
 U

n
p

o
rt

e
d

lic
e
n

s
e
.

K
e
y
a
h

C
h

e
a
tu

m
h

tt
p

:/
/c

o
m

m
o
n

s
.w

ik
im

e
d

ia
.o

rg
/w

ik
i/
F

il
e
:M

e
s
s
y
_

R
o

o
m

.J
P

G

data next

75

data next

8
head

data next

20 NULL

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:K_cheat&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Messy_Room.JPG

Sorted linked list

Add is SLOW

 Need to step through the list to find where

item goes in priority-sorted order

 O(N)

Remove/peek is FAST

 Easy to find item you are looking for (first

in list)

 O(1)

Priority queue implementations

data next

8

data next

20
head

data next

75 NULL

Im
a
g

e
 i
s
 i
n

 t
h

e
 p

u
b

lic
 d

o
m

a
in

.

h
tt
p

:/
/c

o
m

m
o
n

s
.w

ik
im

e
d

ia
.o

rg
/w

ik
i/
F

il
e
:W

a
ll_

C
lo

s
e
t.
jp

g

We want the best of both

Fast add AND fast remove/peek

We will investigate trees as a way to get the best of both worlds

Priority queue implementations

+ =

Fast add Fast remove/peek

