Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics this week:

= Memory and Pointers

Linked List data structure

v

= TODAY’S TOPICS NOT ON THE MIDTERM

Stanford University

List code example: Draw a plcture'

) , struct ListNode {
e || e data | next ListNode(int d = "2,
. ListNode *n = NULL
Before: front™ - - U) |
data = d;

. next = n;
front->next->next = new LinkNode(); }
front->next->next->data = 40; int data;

ListNode *next;
, i , i k;
. data | next data | next
A. After: fronts | data [next
cr. data rnexti data rnexti 7
front—> data next
10 20 \}\(/\ \(‘\Q\V\U\Q

C. Using “next” that is NULL gives error
D. Other/none/more than one Stanford University

FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!

Stanford University

Linked List Data Structure

Putting the ListNode to use

Stanford University

A LinkedList class

Let's write a collection class named LinkedList.
» Has the same public members as ArraylList, Vector, etc.
» add, clear, get, insert, isEmpty, remove, size, toString

= The list is internally implemented as a chain of linked nodes
» The LinkedList keeps a pointer to its front node as a field
> NULL is the end of the list; a NULL front signifies an empty list
LinkedList

front -\ ListNode ListNode ListNode
dat t
add(value) \ chie) | e data [next data | next

insert(index, value) } -3 -—> 17

remove(index)

size() element O element 1 element 2
toString()

Stanford University

Traversing a list? (BUG version)

What's wrong with this approach to traverse and print the list?

while (list != NULL) {

cout << list->data << endl;
list = list->next; // move to next node

}

» |t loses the linked list as it is printing it!

m data | next data | next
990

list >
10

20 o ——>

Stanford University

Traversing a list (12.2) (bug fixed version)

The correct way to print every value in the list:

ListNode* current = list;
while (current != NULL) {
cout << current->data << endl;
current = current->next; // move to next node

= Changing current does not damage the list.

] data [next data [next
list >
10 20 > ...

v

data | next
990

Stanford University

LinkedList.h

class LinkedList {
public:

LinkedList(); LinkedList
~LinkedList();

void add(int value);

void clear(); front -

int get(int index) const;

void insert(int index, int value);
bool isEmpty() const;

void remove(int index);

void set(int index, int value);
int size() const;

private:
ListNode* front;
¥

Stanford University

Implementing add

// Appends the given value to the end of the list.
void LinkedList::add(int value) {

}

= What pointer(s) must be changed to add a node to the end of
a list?

= \What different cases must we consider?

data | next data | next data | next
front -//' 42 3 17

element 0 element 1 element 2

OUNWW e n N -
= N l-/ \ S“M Aﬂ [S:)anfo\%d University

Case 1: Add to empty list

Before adding 20: After:
data | next
front Pl front -//' 20
element O

= \We must create a new node and attach it to the list.

= For an empty list to become non-empty, we must change
front.

Stanford University

Case 2: Non-empty list

Before adding value 20 to end of list:

front -/

— | a2

After:

front -/

data | next

element 0

data | next
42

element 0

data | next
-3

element 1

data [next

element 1

Stanford University

Don't fall off the edge!

Must modify the n pointer of the las

data | next
front -Z-— 42

eleme

= Where should current be pointing, to a t the end?

Q: What loop test will stop us at this place in the list?
A. while (current != NULL) { 1..
B. while (front T= NULL) { ...

g;j>while (current->next != NULL) { ...
. while (front->next != NULL) { ...

Stanford University

Code for add

// Adds the given value to the end of the list.
void LinkedList::add(int value) {
if (front == NULL) {
// adding to an empty list
front = new ListNode(value);
1} else {
// adding to the end of an existing list
ListNode* current = front;
while (current->next != NULL) {
current = current->next;

}

current->next = new ListNode(value);

Stanford University

PD(\\/\LMVB Gep ¢ M \63(-\’\>

Implementing get

// Returns value in list at given index.
int LinkedList::get(int index) {

————————

data | next

‘Jjata next data | next
| R
-3 17

element O element 1 element

\Jochksw oo o (1)
L inleed LY ac? O(Nw

Stanford University

Code for get

// Returns value in list at given index.

// Precondition: © <= index < size()
int LinkedList::get(int index) {
ListNode* current = front;
for (int 1 = 0; i < index; i++) {
current = current->next;

}

return current->data;

Stanford University

Implementing insert

// Inserts the given value at the given index.
void LinkedList::insert(int index, int value) {

data | next data | next data | next
> ‘ |
front JB— 42 3 17

element O element 1 element 2

}

Stanford University

Inserting into a list

Before inserting element at index 2:

front -/

=

After:

front -/

data | next data | next data | next
48 -3 17
element0 elementl element?2

data | next data [next data | next data [next
48 -3 22 »| 17
element0 elementl element2 element3

Q: How many times to advance current to insert at index i ?

A i-1

B.

I C.

|+ 1 D. none of the above

Stanford University

Code for insert

// Inserts the given value at the given index.
// Precondition: @ <= index <= size()
void LinkedList::insert(int index, int value) {
if (index ==
// adding to an empty list
front = new ListNode(value, front);
1} else {
// inserting into an existing list
ListNode* current = front;
for (int 1 = 0; i < index - 1; i++) {
y current = current->next;

current->next =
new ListNode(value, current->next);

Stanford University

Implementing remove

// Removes value at given index from list.
void LinkedList::remove(int index) {

}

= What pointer(s) must be changed to remove a node from a
list?
= What different cases must we consider?

data | next data | next data | next data | next
»‘ 1 1
front 1 | 48 3 22 17

element0 element1l element2 element3

Stanford University

Removing from a list

Before removing element at index 2:

front -/

After:

front -/

data [next data [next data | next
48 -3 22
element0 elementl element?2

data | next data | next data | next
48 -3 17
element0 elementl element?2

Where should current be pointing?
How many times should it advance from front?

data | next
17

element 3

data | next

22

trash

Stanford University

Removing from front

Before removing element at index O:

data [next data | next data rnexti
front EB—T1— | 42 3 B
element 0 element 1 element 2
After:
data [next data [next
front gB—1— | 3 B
element 0 element 1
data | next
To remove the first node, we must change front. 42
trash

Stanford University

Removing the only element

Before: After:
data | next
front -//' 20 front I
element 0

» \WWe must change the front field to store NULL instead of a
node.

= Do we need a special case to handle this?

Stanford University

Code for remove

// Removes value at given index from list.

// Precondition: @ <= index < size()

void LinkedList::remove(int index) {
ListNode* trash;

if (index == 0) { // removing first element
trash = front;
front = front->next;
} else { // removing elsewhere in the list

ListNode* current = front;

for (int i = 0; i < index - 1; i++) {
current = current->next;

}

trash = current->next;
current->next = current->next->next;

}
delete trash;

Stanford University

Other list features

Add the following public members to the LinkedList:
" size()

= isEmpty()

» set(index, value)

= clear()

= toString()

@ize field to the list to return its size more efficiently.

Add preconditions and exception tests as appropriate.

Stanford University

L)
COLUMBUS FIRE

PARAMEDICS

Priority Queue

Emergency Department waiting room operates as a priority queue: patients
are sorted according to priority (urgency), not “first come, first serve” (in
computer science, “first in, first out” or FIFO).

Image is in the public domain. Stanford UniverSity

http://commons.wikimedia.org/wiki/File:Columbus_Fire_Medic_7.JPG

Some priority queue implementation options

head— data | next 7 data | next data | next 7
75 8 20
Unsorted linked list
= |nsert new element in front
= Remove by searchingli -prioTity |
head

data | next
Sorted linked list 7> M

= Always insert new elements where they go in priority-sorted order
= Remove from front (will be highest-priority because sorted)

data

Stanford University

Priority queue implementations

Unsorted linked list head—| 422 ‘ next ‘ data ‘ next ‘ data ‘ next \
75 8 20

Add is FAST
= Just throw it in the list at the front
= 0(1)

Remove/peek is SLOW

» Hard to find item the highest priority
item—could be anywhere

= O(N)

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license. Keyah Cheatum http://commons.wikimedia.org/wiki/File:Messy_Room.JPG

Stanford University

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:K_cheat&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Messy_Room.JPG

Priority queue implementations

Sorted linked list head—»:Hda; 2

Add is SLOW

= Need to step through the list to find where
item goes in priority-sorted order

= O(N)

data [next
75

data | next
20

Remove/peek is FAST

= Easy to find item you are looking for (first
in list)

= O(1)

Stanford University

rg/wiki/File:Wall_Closet.jpg

in the public domain.

http://commons.wikimedia.o

Image is

Priority queue implementations

We want the best of both

Fast add AND fast remove/peek
We will investigate trees as a way to get the best of both worlds

Fast é"idd" Fast remove/peek

Stanford University

