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Topics this week:

 Memory and Pointers

› Revisit some topics from last week

› Deeper look at what a pointer is

• Hexadecimal!

• Address-of operator: &

› Dynamic Memory allocation

› Dereference operator: *

› Dynamic Memory with classes

• The -> operator

› Linked nodes

› Linked List data structure

› (if we have time) Priority Queue and Heap data structure

 TODAY’S TOPICS NOT ON THE MIDTERM
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List code example: Draw a picture!

Before:

front->next->next = new LinkNode();

front->next->next->data = 40;

A. After:

B. After:

C. Using “next” that is NULL gives error 

D. Other/none/more than one
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20 NULLfront

data next
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data next
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front
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data next
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data next
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front

data next

40 NULL

struct ListNode {
ListNode(int d = 0, 

ListNode *n = NULL) {
data = d;
next = n;

}
int data;
ListNode *next;

}



FIRST RULE OF LINKED NODE/LISTS 
CLUB:

DRAW A PICTURE OF 
LINKED LISTS

Do no attempt to code linked nodes/lists without 
pictures!



Linked List Data Structure
Putting the ListNode to use



A LinkedList class

Let's write a collection class named LinkedList.

 Has the same public members as ArrayList, Vector, etc.

› add, clear, get, insert, isEmpty, remove, size, toString

 The list is internally implemented as a chain of linked nodes

› The LinkedList keeps a pointer to its front node as a field

› NULL is the end of the list;  a NULL front signifies an empty list

front

add(value)
insert(index, value)
remove(index)
size()
toString()
...

LinkedList

ListNode ListNode ListNode
data next
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data next

-3

data next
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element 0 element 1 element 2



Traversing a list? (BUG version)

What's wrong with this approach to traverse and print the list?

while (list != NULL) {    

cout << list->data << endl;
list = list->next;    // move to next node

}

 It loses the linked list as it is printing it!
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Traversing a list (12.2) (bug fixed version)

The correct way to print every value in the list:

ListNode* current = list;
while (current != NULL) {

cout << current->data << endl;
current = current->next;  // move to next node

}

 Changing current does not damage the list.
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LinkedList.h

class LinkedList {
public:

LinkedList();
~LinkedList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;

private:
ListNode* front;

};

front = 

LinkedList



Implementing add

// Appends the given value to the end of the list.
void LinkedList::add(int value) {

...
}

 What pointer(s) must be changed to add a node to the end of 

a list?

 What different cases must we consider?

front = 
data next
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Case 1: Add to empty list

Before adding 20: After:

 We must create a new node and attach it to the list.

 For an empty list to become non-empty, we must change 

front.

front = front = 
data next
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element 0



Case 2: Non-empty list

Before adding value 20 to end of list:

After:

front = 
data next
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Don't fall off the edge!

Must modify the next pointer of the last node.

 Where should current be pointing, to add 20 at the end?

Q: What loop test will stop us at this place in the list?

A. while (current != NULL) { ...

B. while (front != NULL) { ...

C. while (current->next != NULL) { ...

D. while (front->next != NULL) { ...

front = 
data next

42

data next
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element 0 element 1



Code for add

// Adds the given value to the end of the list.
void LinkedList::add(int value) {

if (front == NULL) {
// adding to an empty list
front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = front;
while (current->next != NULL) {

current = current->next;
}
current->next = new ListNode(value);

}
}



Implementing get

// Returns value in list at given index.
int LinkedList::get(int index) {

...
}

front = 
data next
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Code for get

// Returns value in list at given index.
// Precondition: 0 <= index < size()
int LinkedList::get(int index) {

ListNode* current = front;
for (int i = 0; i < index; i++) {

current = current->next;
}
return current->data;

}



Implementing insert

// Inserts the given value at the given index.
void LinkedList::insert(int index, int value) {

...
}

front = 
data next

42

data next

-3

data next

17

element 0 element 1 element 2



Inserting into a list

Before inserting element at index 2:

After:

Q: How many times to advance current to insert at index i ?

A.  i - 1 B. i C. i + 1 D. none of the above

front = 
data next
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Code for insert

// Inserts the given value at the given index.
// Precondition: 0 <= index <= size()
void LinkedList::insert(int index, int value) {

if (index == 0) {
// adding to an empty list
front = new ListNode(value, front);

} else {
// inserting into an existing list
ListNode* current = front;
for (int i = 0; i < index - 1; i++) {

current = current->next;
}
current->next =

new ListNode(value, current->next);
}

}



Implementing remove

// Removes value at given index from list.
void LinkedList::remove(int index) {

...
}

 What pointer(s) must be changed to remove a node from a 

list?

 What different cases must we consider?

front = 
data next
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Removing from a list

Before removing element at index 2:

After:

Where should current be pointing?
How many times should it advance from front?

front = 
data next
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Removing from front

Before removing element at index 0:

After:

To remove the first node, we must change front.

front = 
data next
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Removing the only element

Before: After:

 We must change the front field to store NULL instead of a 

node.

 Do we need a special case to handle this?

front = front = 
data next

20

element 0



Code for remove

// Removes value at given index from list.
// Precondition: 0 <= index < size()
void LinkedList::remove(int index) {

ListNode* trash;
if (index == 0) {   // removing first element

trash = front;
front = front->next;

} else {            // removing elsewhere in the list
ListNode* current = front;
for (int i = 0; i < index - 1; i++) {

current = current->next;
}
trash = current->next;
current->next = current->next->next;

}
delete trash;

}



Other list features

Add the following public members to the LinkedList:

 size()

 isEmpty()

 set(index, value)

 clear()

 toString()

Add a size field to the list to return its size more efficiently.

Add preconditions and exception tests as appropriate.



Priority Queue
Emergency Department waiting room operates as a priority queue: patients 

are sorted according to priority (urgency), not “first come, first serve” (in 

computer science, “first in, first out” or FIFO).

Image is in the public domain. 

http://commons.wikimedia.org/wiki/File:Columbus_Fire_Medic_7.JPG



Some priority queue implementation options

Unsorted linked list

 Insert new element in front

 Remove by searching list for highest-priority item

Sorted linked list

 Always insert new elements where they go in priority-sorted order

 Remove from front (will be highest-priority because sorted)
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Unsorted linked list

Add is FAST

 Just throw it in the list at the front

 O(1)

Remove/peek is SLOW

 Hard to find item the highest priority 

item—could be anywhere

 O(N)

Priority queue implementations
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http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:K_cheat&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Messy_Room.JPG


Sorted linked list

Add is SLOW

 Need to step through the list to find where 

item goes in priority-sorted order

 O(N)

Remove/peek is FAST

 Easy to find item you are looking for (first 

in list)

 O(1)

Priority queue implementations
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We want the best of both

Fast add AND fast remove/peek

We will investigate trees as a way to get the best of both worlds

Priority queue implementations

+ =

Fast add Fast remove/peek


