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Topics this week:

= Memory and Pointers

Linked List data structure

v

= TODAY’S TOPICS NOT ON THE MIDTERM
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List code example: Draw a plcture'

) , struct ListNode {
e || e data | next ListNode(int d = "2,
. ListNode *n = NULL
Before: front™ - - U ) |
data = d;

. next = n;
front->next->next = new LinkNode(); }
front->next->next->data = 40; int data;

ListNode *next;
, i , i k;
. data | next data | next
A. After: fronts | data [ next
cr. data rnexti data rnexti 7
front—> data next
10 20 \}\(/\ \(‘\Q\V\U\Q

C. Using “next” that is NULL gives error
D. Other/none/more than one Stanford University




FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!
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Linked List Data Structure

Putting the ListNode to use
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A LinkedList class

Let's write a collection class named LinkedList.
» Has the same public members as ArraylList, Vector, etc.
» add, clear, get, insert, isEmpty, remove, size, toString

= The list is internally implemented as a chain of linked nodes
» The LinkedList keeps a pointer to its front node as a field
> NULL is the end of the list; a NULL front signifies an empty list
LinkedList

front -\ ListNode ListNode ListNode
dat t
add(value) \ chie) | e data [ next data | next

insert(index, value) } -3 -—> 17

remove(index)

size() element O element 1 element 2
toString()
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Traversing a list? (BUG version)

What's wrong with this approach to traverse and print the list?

while (list != NULL) {

cout << list->data << endl;
list = list->next; // move to next node

}

» |t loses the linked list as it is printing it!

m data | next data | next
990

list >
10

20 o ——>
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Traversing a list (12.2) (bug fixed version)

The correct way to print every value in the list:

ListNode* current = list;
while (current != NULL) {
cout << current->data << endl;
current = current->next; // move to next node

= Changing current does not damage the list.

] data [ next data [ next
list >
10 20 > ...

v

data | next
990
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LinkedList.h

class LinkedList {
public:

LinkedList(); LinkedList
~LinkedList();

void add(int value);

void clear(); front -

int get(int index) const;

void insert(int index, int value);
bool isEmpty() const;

void remove(int index);

void set(int index, int value);
int size() const;

private:
ListNode* front;
¥
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Implementing add

// Appends the given value to the end of the list.
void LinkedList::add(int value) {

}

= What pointer(s) must be changed to add a node to the end of
a list?

= \What different cases must we consider?

data | next data | next data | next
front -//' 42 3 17

element 0 element 1 element 2
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Case 1: Add to empty list

Before adding 20: After:
data | next
front Pl front -//' 20
element O

= \We must create a new node and attach it to the list.

= For an empty list to become non-empty, we must change
front.
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Case 2: Non-empty list

Before adding value 20 to end of list:

front -/

— | a2

After:

front -/

data | next

element 0

data | next
42

element 0

data | next
-3

element 1

data [ next

element 1
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Don't fall off the edge!

Must modify the n pointer of the las

data | next
front -Z-— 42

eleme

= Where should current be pointing, to a t the end?

Q: What loop test will stop us at this place in the list?
A. while (current != NULL) { 1..
B. while (front T= NULL) { ...

g;j>while (current->next != NULL) { ...
. while (front->next != NULL) { ...
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Code for add

// Adds the given value to the end of the list.
void LinkedList::add(int value) {
if (front == NULL) {
// adding to an empty list
front = new ListNode(value);
1} else {
// adding to the end of an existing list
ListNode* current = front;
while (current->next != NULL) {
current = current->next;

}

current->next = new ListNode(value);
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Implementing get

// Returns value in list at given index.
int LinkedList::get(int index) {

————————

data | next

‘Jjata next data | next
| R
-3 17

element O element 1 element

\Jochksw oo o (1)
L inleed LY ac? O(Nw
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Code for get

// Returns value in list at given index.

// Precondition: © <= index < size()
int LinkedList::get(int index) {
ListNode* current = front;
for (int 1 = 0; i < index; i++) {
current = current->next;

}

return current->data;
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Implementing insert

// Inserts the given value at the given index.
void LinkedList::insert(int index, int value) {

data | next data | next data | next
> ‘ |
front JB— 42 3 17

element O element 1 element 2

}
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Inserting into a list

Before inserting element at index 2:

front -/

=

After:

front -/

data | next data | next data | next
48 -3 17
element0 elementl element?2

data | next data [ next data | next data [ next
48 -3 22 »| 17
element0 elementl element2 element3

Q: How many times to advance current to insert at index i ?

A i-1

B.

I C.

|+ 1 D. none of the above
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Code for insert

// Inserts the given value at the given index.
// Precondition: @ <= index <= size()
void LinkedList::insert(int index, int value) {
if (index ==
// adding to an empty list
front = new ListNode(value, front);
1} else {
// inserting into an existing list
ListNode* current = front;
for (int 1 = 0; i < index - 1; i++) {
y current = current->next;

current->next =
new ListNode(value, current->next);
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Implementing remove

// Removes value at given index from list.
void LinkedList::remove(int index) {

}

= What pointer(s) must be changed to remove a node from a
list?
= What different cases must we consider?

data | next data | next data | next data | next
»‘ 1 1
front 1 | 48 3 22 17

element0 element1l element2 element3
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Removing from a list

Before removing element at index 2:

front -/

After:

front -/

data [ next data [ next data | next
48 -3 22
element0 elementl element?2

data | next data | next data | next
48 -3 17
element0 elementl element?2

Where should current be pointing?
How many times should it advance from front?

data | next
17

element 3

data | next

22

trash
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Removing from front

Before removing element at index O:

data [ next data | next data rnexti
front EB—T1— | 42 3 B
element 0 element 1 element 2
After:
data [ next data [ next
front gB—1— | 3 B
element 0 element 1
data | next
To remove the first node, we must change front. 42
trash

Stanford University



Removing the only element

Before: After:
data | next
front -//' 20 front I
element 0

» \WWe must change the front field to store NULL instead of a
node.

= Do we need a special case to handle this?
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Code for remove

// Removes value at given index from list.

// Precondition: @ <= index < size()

void LinkedList::remove(int index) {
ListNode* trash;

if (index == 0) { // removing first element
trash = front;
front = front->next;
} else { // removing elsewhere in the list

ListNode* current = front;

for (int i = 0; i < index - 1; i++) {
current = current->next;

}

trash = current->next;
current->next = current->next->next;

}
delete trash;
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Other list features

Add the following public members to the LinkedList:
" size()

= isEmpty()

» set(index, value)

= clear()

= toString()

@ize field to the list to return its size more efficiently.

Add preconditions and exception tests as appropriate.
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L)
COLUMBUS FIRE

PARAMEDICS

Priority Queue

Emergency Department waiting room operates as a priority queue: patients
are sorted according to priority (urgency), not “first come, first serve” (in
computer science, “first in, first out” or FIFO).

Image is in the public domain. Stanford UniverSity

http://commons.wikimedia.org/wiki/File:Columbus_Fire_Medic_7.JPG




Some priority queue implementation options

head— data | next 7 data | next data | next 7
75 8 20
Unsorted linked list
= |nsert new element in front
= Remove by searchingli -prioTity |
head

data | next
Sorted linked list 7> M

= Always insert new elements where they go in priority-sorted order
= Remove from front (will be highest-priority because sorted)

data
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Priority queue implementations

Unsorted linked list head—| 422 ‘ next ‘ data ‘ next ‘ data ‘ next \
75 8 20

Add is FAST
= Just throw it in the list at the front
= 0(1)

Remove/peek is SLOW

» Hard to find item the highest priority
item—could be anywhere

= O(N)

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license. Keyah Cheatum http://commons.wikimedia.org/wiki/File:Messy_Room.JPG
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Priority queue implementations

Sorted linked list head—»:Hda; 2

Add is SLOW

= Need to step through the list to find where
item goes in priority-sorted order

= O(N)

data [ next
75

data | next
20

Remove/peek is FAST

= Easy to find item you are looking for (first
in list)

= O(1)
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Priority queue implementations

We want the best of both

Fast add AND fast remove/peek
We will investigate trees as a way to get the best of both worlds

Fast é"idd" Fast remove/peek
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