Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics:

= Priority Queue
» Linked List implementation
> Heap data structure implementation

= TODAY’S TOPICS NOT ON THE MIDTERM

Stanford University

Some priority queue implementation options

head— data | next data | next data | next 7
75 8 20
Unsorted linked list

= Insert new element in front: O(1)
= Remove by searching list: O(N)

head— data | next data [next data rnext 7
Sorted linked list K H 20 75 M

= Always insert in sorted order: O(N)
= Remove from front: O(1)

Stanford University

Priority queue implementations

We want the best of both

Fast add AND fast remove/peek
We will investigate trees as a way to get the best of both worlds

Stanford University

Binary Heaps

Stanford University

Heap: not to be confused with the Heap!

= Although the Stack section of memory is a Stack like the ADT, the
Heap section of memory has nothing to do with the Heap structure.

Source: http://www.flickr.com/photos/35237093334@N01/409465578/
Author: http:/Aww.flickr.com/people/35237093334@N01 Peter Kazanjy]

Stack ADT

Stack

6
~ \10 Heap data structure

Heap * 0?\ /" \
18 14

11 21

Ox0

27

= Probably just happened to reuse the same word Stanford University

Binary trees

Stanford University

A binary tree

“In computer science, a binary tree is a tree data
structure in which each node has at most two
child nodes, usually distinguished as "left"
and "right".” (Thanks, Wikipedia!)

Stanford University

“In computer science, a binary
tree is a tree data structure in
which each node has at most

How many of these are valid binary two child nodes, usually
istinguished as "left" and
trees? % L "right".” (Thanks, Wikipedia!)

Stanford University

A node struct for binary trees

Similar to a linked list node,
it contains a pointer to
data, and a pointer to
the nearby elements

A binary node tree has two
child pointers, 1eft and
right

data: [::]

left:

right

struct TreeNode {

int data; data: D
~—

TreeNode* left;
TreeNode* right;

}s

Heaps!

Stanford University

Binary Heaps*

Binary heaps are one kind of binary tree
They have a few special restrictions, in addition to the usual binary tree:

= Must be complete
» No “gaps”™—nodes are filled in left-to-right on each level (row) of the tree

= QOrdering of data must obey heap property
» Min-heap version: a parent’s data is always < both its children’s data
» Max-heap version: a parent’s data is always 2 both its children’s data

* There are other kinds of heaps as well. For example,
binomial heap is extra credit on your assignment. Stanford University

How many of these/:ould be valid binary heaps?
v

O cf QCV)W / WO

£ ﬁm ’ f%V
|

E. 5-8

0w >
w N O

Stanford University

How many of these are valid min-binary-heaps?

/K /\ /F
21 1/\016 P \ / /M\ /P
Y 8 14 11 v 2z g /J\MO

QWWW\Q ole- O\L
\m‘r

S/W\“ ™

Stanford University

Binary heap in an array

Stanford University

Binary heap in an array

We actually do NOT typically use a
node object to implement heaps

Because they have the special added
constraint that they must be
complete, they fit nicely into an

array
/e\
€s €3
/\ /\ 01 2 3 4 5 6
€4 € €7

Stanford University

es

Two approaches:
Binary heap in an array

Wait, but the homework handout starts
storing the elements at array index 1!

» Either way is ok for the assignment.

> You should understand both ways, so
we're teaching both ways (one in
handout and one in lecture)

N
/)

@1 |e]ez3|e | |®% |®7 | O-based

€3
/\ OR 01 2 3 4 5 6
8 ©7 1-based

01 2 3 45 6 7 - anford University

€5

Heap in an array / e\ N~

1 bz €3 I/54 ®s5 | % | 7

AN RS

?\/g)r\\(' ; W\/\{v\
For (0-baesd) tree of height h, array length is 2"-1 %{?I"V\ﬁ wse
For a node in array index =< 3 \ﬁgjr\/\ o0t and
* Parentis atarray index: = | | W\ c\/\ \ &
A -2 MO\M\M S hest
B. i/2 o O 5
C. (i—12 g

D. 2i

Stanford University

e
Fact summary: /\
Binary heap in an array /ez\ /es\
€4 © 6 €7

O-based: 1-based:
For tree of height h, array length is 2"-1 For tree of height h, array length is 2h
For a node in array index i. For a node in array index i:
= Parentis at array index: (i—1)/2 = Parentis at array index: i /2
= Left child is at array index: 2i + 1 = Left child is at array index: 2i
= Right child is at array index: 2i + 2 = Right child is at array index: 2i + 1

Stanford University

Binary heap insert and delete

Stanford University

Binary heap insert + “bubble up”

Size=8, Capacity=15

r'/s\m @ 1 2 3 4 5 6 7 8 9 . 14
N N\
I a1 5|7 (10|18 (14|12 |21 (27| ? | ? | .. | ?
27

P Size=9, Capacity=15

] 10

N N\ 0 1 2 3 4 5 6 7 8 9 .. 14
T 14 11 21
27 18 5|6 |10 7 |14|11 |21 (27|18 ? | .. | ?

Stanford University

[Binary heap insert reference page]

/5\\ /5\
7 10 7 10
/N N\ N /N
18 14 11 21 18 14 11 21
57 57 &

(b) Add the element. 6. as the new rightmost
leaf. This maintains a complete binary tree.
but may violate the minheap ordering

(a) A minheap prior to adding an
element. The circle is where the new
element will be put initially.

property.
D L)
N N
7 10 6 10
VANEAN ON /N
s.\ 14 11 21 7 14 11 2
37/\13 27 18

(d) Repeat the step described in (c¢) until the
parent of the new element is less than or equal to
the new element. The minheap invariants have
been restored.

(c) “Bubble up” the new element.
Starting with the new element. if the
child is less than the parent. swap them.
This moves the new element up the tree.

swarnund University

Binary heap delete + “trickle down”

PN Size=9, Capacity=15

6 10

N /N e 1 2 3 4 5 6 7 8 9 . 14
T 14 11 21
27 18 516 |10 7 (14|11 (21|27 |18 | ? | .. | ?
ngx Size=8, Capacity=15

o~ A @ 1 2 3 4 5 6 7 8 9 . 14

7ou oo 6| 7110|2714 |11 21|18 2| 2| . |2

18

Stanford University

(a) Moving the rightmost leaf to the top of
the heap to fill the gap created when the top
element (5) was removed. This is a complete
binary tree. but the minheap ordering
property has been violated.

(b) “Trickle down” the element. Swapping
top with the smaller of its two children leaves
top’s right subtree a valid heap. The subtree
rooted at 18 still needs fixing.

(c) Last swap. The heap is fixed when 18 1s
less than or equal to both of its children. The
minheap invariants have been restored

top is removed
¢~ from the heap

N N
18 14 11 21
27

[Binary heap delete + “trickle-down” reference page]

ford University

