Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics:

= Finish up heap data structure implementation
> Enqueue (“bubble up”)
» Dequeue (“trickle down”)
= Binary Search Tree (BST)
» Starting with a dream: binary search in a linked list?
> How our dream provided the inspiration for the BST
> BST insert
> Big-O analysis of BST
» (if we have time) BST balance issues

Stanford University

Binary heap insert and delete

Stanford University

Binary heap insert + “bubble up”

Size=8, Capacity=15

r‘/&\m © 1 2 3 4 5 6 7 8 9 . 14
VAN
Jpowuonoa 5 | 7 |10]18|14 11|21 (27| 2| ? | .. | ?
27

P Size=9, Capacity=15

6 0

ALY © 1 2 3 4 5 6 7 8 9 . 14
T 14 11 21
5 8 5 | 6 10| 7 |14 |11 21|27 |18 ? | .. | ?

Stanford University

[Binary heap insert reference page]

/5\\
7 10
NN

18 14 11 21

27

(a) A minheap prior to adding an
element. The circle is where the new

element will be put initially.

/5\
7 10
AN N

B 14 11 21
N

27 18

/5\\
7 10
/N /N
18 14 11 21
27 8

(b) Add the element. 6. as the new rightmost
leaf. This maintains a complete binary tree.
but may violate the minheap ordering

property.

/5\\

6 10
O\ /\
11 21

7 14

_7 18

(c) “Bubble up” the new element.
Starting with the new element. if the
child is less than the parent, swap them.

This moves the new element up the tree.

(d) Repeat the step described in (c¢) until the
parent of the new element is less than or equal to
the new element. The minheap invariants have
been restored.

swamund University

Binary heap delete + “trickle down”

P Size=9, Capacity=15

6 10

N /N e 1 2 3 4 5 6 7 8 9 . 14
7 14 11 21
2738 5|6 |10 7 |14|11 |21 (27|18 ? | .. | ?

s Size=8, Capacity=15

T..-r-"' ~

N\ /'":'\ e 1 2 3 4 5 6 7 8 9 . 14

om 2 6 | 7102714112218 2| 2| .| 2

18

Stanford University

(a) Moving the rightmost leaf to the top of
the heap to fill the gap created when the top
element (5) was removed. This 1s a complete
binary tree, but the minheap ordering
property has been violated.

(b) “Trickle down” the element. Swapping
top with the smaller of its two children leaves
top’s right subtree a valid heap. The subtree
rooted at 18 still needs fixing.

(c) Last swap. The heap 1s fixed when 18 is
less than or equal to both of its children. The
minheap invariants have been restored

[Binary heap delete + “trickle-down” reference page]

top is removed
¢~ from the heap

[4 10
(/N /N
18 14 11 21
27 ford University

Binary Search Trees

Implementing the Map interface with Binary Search Trees

Stanford University

Implementing Map interface with a Binary Search Tree (BST)

= Often we think of a hash table as the go-to implementation of the
Map interface

> Will talk about this on Thursday!

= Binary Search Trees are another option

» C++’s Standard Template Library (STL) uses a Red-Black tree (a
type of BST) for their map

» Stanford library also uses a BST
« Use hash-map.h to get a hashing version

Stanford University

Binary Search in a Linked List?

Exploring a good idea, finding way to make it work

Stanford University

Imagine storing sorted data in an array

m-----m-mm

13 25 29 33 51 89 90 95

= How long does it take us to find?
» Binary search!
> O(logn): awesome!

= But slow to insert
» Scoot everyone over to make space
> O(n): not terrible, but pretty bad compared to log(n) or O(1)

» In contrast, linked list stores its nodes scattered all over the heap,
so it doesn’t have to scoot things over

Stanford University

Q. Can we do binary search on a linked
list to implement a quick insert?

A. No.

= The nodes are spread all over the heap, and we must follow
“next” pointers one at a time to navigate.

= Therefore cannot jump right to the middle.

= Therefore cannot do binary search.

= Find is O(N): not terrible, but pretty bad compared to O(logn) or
O(1)

Binary Search Tree can be thought of as a linked list that has

pointers to the middle, again and again (recursively), to form a
tree structure

Stanford University

An ldealized Binary Search Tree

e 34
ety T
/? 24 f-*/{g 50
PRAT AR 0

Stanford University

TreeMap

An implementation of the Map interface

Stanford University

tree-map.h

template <typename Key, typename Value>
class TreeMap {
public:

TreeMap () ;

~TreeMap () ;

bool isEmpty () const { return size() == 0; }
int size() const { return count; }

bool containsKey (const Keyé& key) const;

void put (const Key& key, const Valueé& value);
Value get(const Keyé& key) const;

Value& operator|[] (const Keyé& key);

Stanford University

tree-map.h

private:
struct node {
Key key;

Value value;

node *left, *right;
};
int count;
node *root;

};

Stanford University

Example: insert 2

BST put() s

Pretty simple! l(p 43
= |f key > node’s key /\ /\
» Go right! ? er 49 5.
| /\ N /™ /\C:O
= |If key < node’s key 4 12 Jo 2% 36 4% 97
| ARANIEA
» Go left! /NN I~ N5y) 59 6S
= |f equal, do update of value— 17 L 1o1519 R %09 R

no duplicate keys!

= |f there is nothing currently in
the direction you are going,
that’s where you end up

Stanford University

BST put()

Insert: 22, 9, 34, 18, 3

How many of these result in the same tree structure as above?

22,34,9,18, 3 A. None of these
22,18,9, 3, 34 B. 1 of these
22,9, 3,18, 34 c. 2 of these

D. All of these

Stanford University

What is the WORST CASE cost for doing
containsKey() in BST?

O(1)
O(log n)
O(n)

O(n log n)
O(n?)

moow»

Stanford University

What is the worst case cost for doing
containsKey() in BST if the BST is balanced?

O(logN)—awesome!

BSTs is that they are great when balanced
BST is bad when unbalanced

Balance depends on order of insert of elements

Stanford University

