
Programming Abstractions

Cynthia Lee

C S 1 0 6 X



Topics:

 Finish up heap data structure implementation

› Enqueue (“bubble up”)

› Dequeue (“trickle down”)

 Binary Search Tree (BST)

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

• Note: we do NOT actually construct BSTs using this method

› BST insert

› Big-O analysis of BST

› (if we have time) BST balance issues

2



Binary heap insert and delete



Binary heap insert + “bubble up”

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 7 10 18 14 11 21 27 ? ? … ?

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?



[Binary heap insert reference page]



Binary heap delete + “trickle down”

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 7 10 27 14 11 21 18 ? ? … ?

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?



[Binary heap delete + “trickle-down” reference page]



Binary Search Trees
Implementing the Map interface with Binary Search Trees



Implementing Map interface with a Binary Search Tree (BST)

 Often we think of a hash table as the go-to implementation of the 

Map interface

› Will talk about this on Thursday!

 Binary Search Trees are another option

› C++’s Standard Template Library (STL) uses a Red-Black tree (a 

type of BST) for their map

› Stanford library also uses a BST

• Use hash-map.h to get a hashing version



Binary Search in a Linked List?
Exploring a good idea, finding way to make it work



Imagine storing sorted data in an array

 How long does it take us to find? 

› Binary search!

› O(logn): awesome!

 But slow to insert

› Scoot everyone over to make space

› O(n): not terrible, but pretty bad compared to log(n) or O(1)

› In contrast, linked list stores its nodes scattered all over the heap, 
so it doesn’t have to scoot things over

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Q. Can we do binary search on a linked 
list to implement a quick insert?

A. No.

 The nodes are spread all over the heap, and we must follow 
“next” pointers one at a time to navigate. 

 Therefore cannot jump right to the middle.

 Therefore cannot do binary search.

 Find is O(N): not terrible, but pretty bad compared to O(logn) or 
O(1)

Binary Search Tree can be thought of as a linked list that has 
pointers to the middle, again and again (recursively), to form a 
tree structure



An Idealized Binary Search Tree



TreeMap
An implementation of the Map interface



tree-map.h

template <typename Key, typename Value> 

class TreeMap { 

public: 

TreeMap(); 

~TreeMap(); 

bool isEmpty() const { return size() == 0; } 

int size() const { return count; } 

bool containsKey(const Key& key) const; 

void put(const Key& key, const Value& value); 

Value get(const Key& key) const; 

Value& operator[](const Key& key);

...



tree-map.h

...

private: 

struct node { 

Key key; 

Value value; 

node *left, *right; 

}; 

int count; 

node *root; 

}; 



BST put()

Pretty simple!

 If key > node’s key

› Go right!

 If key < node’s key

› Go left!

 If equal, do update of value—

no duplicate keys!

 If there is nothing currently in 

the direction you are going, 

that’s where you end up

Example: insert 2



BST put()

Insert: 22, 9, 34, 18, 3

How many of these result in the same tree structure as above?

22, 34, 9, 18, 3

22, 18, 9, 3, 34

22, 9, 3, 18, 34

A. None of these

B. 1 of these

C. 2 of these

D. All of these



What is the WORST CASE cost for doing 
containsKey() in BST?

A. O(1)

B. O(log n)

C. O(n)

D. O(n log n)

E. O(n2)



What is the worst case cost for doing 
containsKey() in BST if the BST is balanced?

O(logN)—awesome!

BSTs is that they are great when balanced

BST is bad when unbalanced

Balance depends on order of insert of elements


