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Topics:

= Binary Search Tree (BST)
)

)

)

>

» BST balance issues
= Traversals

> Pre-order

> In-order

» Post-order

> Breadth-first
= Applications of Traversals
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An ldealized Binary Search Tree

Important note of clarification:
rast: 39 When | was talking about

/\ setting up the tree as a
binary search (pic at left),

Y p 7': [(p 4/?\ that was an explanation of
N the inspiration for BST.

? 34 40 SC Lining up the values and
/\ /\Q 7 36\45‘ gg\gothen arranging the pointers
g l;l 30 K 2y / all at once is not how we
]/ L 1o s 1‘1 3& o 2% o) 53 97 Uge them (insert one at a

time using algorithm we
talked about).
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What is the worst case cost for doing
containsKey() in BST if the BST is balanced?

O(logN)—awesome!

BSTs is that they are great when balanced
BST is bad when unbalanced

Balance depends on order of insert of elements
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Ok, so, long-chain BSTs are bad, should we
worry about it? [math puzzle time]

One way to create a bad BST is to insert the elements in decreasing order: 34,
22,9, 3

That’s not the only way...

How many distinctly structured BSTs are there that exhibit the worst case
height (height equals number of nodes) for a tree with the 4 nodes listed

above?
A. 2-3
B. 4-5
C. 6-7
. 8-9
E. than 9

Bonus question: general formula for any BST of size n?

Extra bonus gquestion (CS109): what is this as a fraction of all trees (i.e.,
probability of worst-case tree).
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BST Balance Strategies

So we definitely need to balance, how can we do that if the tree location is
fixed when we insert?
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Red-Black trees

One of the most famous (and most tricky) strategies for
keeping a BST balanced

Not guaranteed to be perfectly balanced, but “close
enough” to keep O(log n) guarantee on operations
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Red-Black trees

In addition to the requirements imposed on a binary
search trees, red-black trees must meet these:

= Anode is either red or black.

= The root is black.

= All leaves (null children) are black.

= Both children of every red node are black.

= Every simple path from a given node to any of its
descendant leaves contains the same number of
black nodes.

» (This is what guarantees “close” to balance)
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Video: http://www.youtube.com/watch?v=vDHFF4wjWYU

Red-Black trees

Every simple path from a given node to any of its
descendant leaves contains the same number
of black nodes.

= (This is what guarantees “close” to balance)
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http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg
http://www.youtube.com/watch?v=vDHFF4wjWYU

Other BST balance strategies

Red-Black tree
AVL tree

Treap (BST + heap in one tree! What could be cooler than
that, amirite? ¥ 9 ¥ )

Other fun types of BST:
Splay tree
B-Tree
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Other fun types of BST

Splay tree

= Rather than only worrying about balance, Splay Tree
dynamically readjusts based on how often users search for
an item. Most commonly-searched items move to the top,
saving time
» For search terms, imagine “Bieber” would be near the
root, and “polymorphism” would be further down by the
leaves, because humanity is disappointing sometimes...

B-Tree
= Like BST, but a node can have many children, not just 2
» Used for huge databases
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BST and Heap quick recap/cheat
sheet
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BST and Heap quick recap/cheat sheet

Heap (Priority Queue) BST (Map)
= Structure: must be “complete” Structure: any valid binary tree
= Order: parent priority must be <= Order: leftchild.key < self.key <

bOtthhi]dl;en - | rightchild.key
> This Is tor min-heap, opposite > No duplicate keys

IS true for max-heap _
> No rule about whether left child > Because it's a Map, values go

is > or < the right child along for the ride w/keys
= Big-O: guaranteed log(n) enqueue ®* BIg-O:log(n) if balanced, but
and dequeue might not be balanced, then linear
= Operations: always add to end of = Qperations: recursively repeat:
array and then “"bubble up”; for start at root and go left if key <
dequeue do “trickle down” root, go right if key > root
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Tree Traversals!

These are not only for Binary Search Trees, but we often do them on BSTs
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o (€—or
What does this print? P vy J
(assume we call traverse on the root node to start) m\f‘ﬁ\ff

void traverse (Node *node) {

if (no = L) {

traverse (node= ;
traverse (node->right) ;

}
}

A ABCDEF
8. ABDECF
C. DB A

D. DEBFCA
E. Other/none/more
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. DoSt —gc Aot
What does this print? \
(assume we call travcgrse on the root node to start) C AV &Q

void traverse (Node *node) {
if (node '= NULL) {
traverse (node->left) ;
traverse (node->right) ;
cout << node->key << " ";

}
}

A. ABCDEF
B. ABDECF
C. DBEFCA

E. Other/none/more
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o N 0N AT
What does this print? J
(assume we call traverse on the root node to start) %g\\,—m

void traverse (Node *node) {
if (node '= NULL) {
traverse (node->left) ;
cout << node->key << " ";
traverse (node->right) ;
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How can we get code to print our ABCs in order
as shown? (note: not BST order)

void traverse (Node *node) { Q
if (node '= NULL) {
?? cout << node->key << " "; @ @
traverse (node->left) ;

traverse (node->right) ; @ e G

}

You can’t do it by using this code and moving around the cout—we already
tried moving the cout to all 3 possible places and it didn’t print in order

= You can but you use a gueue instead of recursion
=  “Breadth-first” search

= Again we see this key theme
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Applications of Tree Traversals

Beautiful little things from an algorithms/theory standpoint, but they have a
practical side too!
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Traversals a very commonly-used tool in your CS toolkit

void traverse(Node *node) {
if (node != NULL) {
traverse(node->left);
// “do something”
traverse(node->right);

}
}

= Customize and move the “do something,” and that’s the
basis for dozens of algorithms and applications
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Map interface implemented with BST

= Remember how when you iterate over the Stanford library Map you get
the keys in sorted order?

» (we used this for the word occurrence counting code example in class)
void printMap(const Map<string, int>& themap) {
for (string s : themap) {
cout << s; // printed in sorted order

}

= Now you know why it can do that in O(N) time!
> “In-order” traversal
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Applications of the traversals

= You have a tree that represents evaluation of an
arithmetic expression. Which traversal would form the
foundation of your evaluation algorithm?

A. Pre-order
B. In-order ‘
C. Post-order
N O R O
) W) @
(3+4) * (8/2)
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Applications of the traversals

You are writing the destructor for a BST class. Given a
pointer to the root, it needs to free each node. Which
traversal would form the foundation of your destructor
algorithm? BST

A. Pre-order
B. In-order ~

C. Post-order \\A

D. Breadth-first
() (&)
L @ ©
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