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Topics:

 Binary Search Tree (BST)

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

• Note: we do NOT actually construct BSTs using this method

› BST insert

› Big-O analysis of BST

› BST balance issues

 Traversals

› Pre-order

› In-order

› Post-order

› Breadth-first

 Applications of Traversals
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An Idealized Binary Search Tree

Important note of clarification: 

When I was talking about 

setting up the tree as a 

binary search (pic at left), 

that was an explanation of 

the inspiration for BST. 

Lining up the values and 

then arranging the pointers 

all at once is not how we 

use them (insert one at a 

time using algorithm we 

talked about). 



What is the worst case cost for doing 
containsKey() in BST if the BST is balanced?

O(logN)—awesome!

BSTs is that they are great when balanced

BST is bad when unbalanced

Balance depends on order of insert of elements



Ok, so, long-chain BSTs are bad, should we 
worry about it? [math puzzle time]

One way to create a bad BST is to insert the elements in decreasing order: 34, 
22, 9, 3

That’s not the only way…

How many distinctly structured BSTs are there that exhibit the worst case 
height (height equals number of nodes) for a tree with the 4 nodes listed 
above?

A. 2-3

B. 4-5

C. 6-7

D. 8-9

E. More than 9

Bonus question: general formula for any BST of size n?

Extra bonus question (CS109): what is this as a fraction of all trees (i.e., 
probability of worst-case tree).



BST Balance Strategies
So we definitely need to balance, how can we do that if the tree location is 

fixed when we insert?



Red-Black trees

One of the most famous (and most tricky) strategies for 

keeping a BST balanced

Not guaranteed to be perfectly balanced, but “close 

enough” to keep O(log n) guarantee on operations 



Red-Black trees

In addition to the requirements imposed on a binary 

search trees, red–black trees must meet these:

 A node is either red or black.

 The root is black.

 All leaves (null children) are black. 

 Both children of every red node are black.

 Every simple path from a given node to any of its 

descendant leaves contains the same number of 

black nodes.

› (This is what guarantees “close” to balance)



Red-Black trees

Every simple path from a given node to any of its 
descendant leaves contains the same number 
of black nodes.

 (This is what guarantees “close” to balance)

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg

Video: http://www.youtube.com/watch?v=vDHFF4wjWYU

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg
http://www.youtube.com/watch?v=vDHFF4wjWYU


Other BST balance strategies

Red-Black tree

AVL tree

Treap (BST + heap in one tree! What could be cooler than 

that, amirite? ♥ ♥ ♥ )

Other fun types of BST:

Splay tree

B-Tree



Other fun types of BST

Splay tree

 Rather than only worrying about balance, Splay Tree 

dynamically readjusts based on how often users search for 

an item. Most commonly-searched items move to the top, 

saving time

› For search terms, imagine “Bieber” would be near the 

root, and “polymorphism” would be further down by the 

leaves, because humanity is disappointing sometimes… 

B-Tree

 Like BST, but a node can have many children, not just 2

 Used for huge databases



BST and Heap quick recap/cheat 
sheet
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BST and Heap quick recap/cheat sheet

Heap (Priority Queue)

 Structure: must be “complete”

 Order: parent priority must be <= 
both children 

› This is for min-heap, opposite 
is true for max-heap

› No rule about whether left child 
is > or < the right child

 Big-O: guaranteed log(n) enqueue
and dequeue

 Operations: always add to end of 
array and then “bubble up”; for 
dequeue do “trickle down”

BST (Map)

 Structure: any valid binary tree

 Order: leftchild.key < self.key < 

rightchild.key

› No duplicate keys

› Because it’s a Map, values go 

along for the ride w/keys

 Big-O: log(n) if balanced, but 

might not be balanced, then linear

 Operations: recursively repeat: 

start at root and go left if key < 

root, go right if key > root



Tree Traversals!
These are not only for Binary Search Trees, but we often do them on BSTs



What does this print? 
(assume we call traverse on the root node to start)

void traverse(Node *node) {

if (node != NULL) {

cout << node->key << " ";

traverse(node->left);

traverse(node->right);

}

}

A. A B C D E F

B. A B D E C F

C. D B E F C A

D. D E B F C A

E. Other/none/more

A

B C

D E F



What does this print? 
(assume we call traverse on the root node to start)

void traverse(Node *node) {

if (node != NULL) {

traverse(node->left);

traverse(node->right);

cout << node->key << " ";

}

}

A. A B C D E F

B. A B D E C F

C. D B E F C A

D. D E B F C A

E. Other/none/more

A

B C

D E F



What does this print? 
(assume we call traverse on the root node to start)

void traverse(Node *node) {

if (node != NULL) {

traverse(node->left);

cout << node->key << " ";

traverse(node->right);

}

}

A. 1 2 4 5 8 9
B. 1 4 2 9 8 5
C. 5 2 1 4 8 9
D. 5 2 8 1 4 9
E. Other/none/more

5

2 8

1 4 9



How can we get code to print our ABCs in order 
as shown? (note: not BST order)

void traverse(Node *node) {

if (node != NULL) {

??  cout << node->key << " ";

traverse(node->left);

traverse(node->right);

}

}

You can’t do it by using this code and moving around the cout—we already 
tried moving the cout to all 3 possible places and it didn’t print in order

 You can but you use a queue instead of recursion

 “Breadth-first” search

 Again we see this key theme

A

B C

D E F



Applications of Tree Traversals
Beautiful little things from an algorithms/theory standpoint, but they have a 

practical side too!



Traversals a very commonly-used tool in your CS toolkit

void traverse(Node *node) {
if (node != NULL) {

traverse(node->left);
// “do something”
traverse(node->right);

}
}

 Customize and move the “do something,” and that’s the 
basis for dozens of algorithms and applications



Map interface implemented with BST

 Remember how when you iterate over the Stanford library Map you get 

the keys in sorted order? 

› (we used this for the word occurrence counting code example in class)

void printMap(const Map<string, int>& themap) {

for (string s : themap) {

cout << s; // printed in sorted order

}

}

 Now you know why it can do that in O(N) time!

› “In-order” traversal



Applications of the traversals

 You have a tree that represents evaluation of an 

arithmetic expression. Which traversal would form the 

foundation of your evaluation algorithm?

A. Pre-order

B. In-order

C. Post-order

D. Breadth-first
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Applications of the traversals

 You are writing the destructor for a BST class. Given a 

pointer to the root, it needs to free each node. Which 

traversal would form the foundation of your destructor 

algorithm?

A. Pre-order

B. In-order

C. Post-order

D. Breadth-first
5

2 8

1 4 9

BST 


