Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics:

= Today we’re going to be talking about your next
assignment: Huffman coding

» I's a compression algorithm

» It's provably optimal (take that, Pied Piper)
» It involves binary tree data structures, yay!
» (assignment goes out Wednesday)

Stanford University

Getting Started on Huffman

Before we talk about the algorithm, let’s set the scene a bit and talk about
BINARY

Stanford University

In a computer, everything is numbers!

Specifically, everything is binary

= Images (qif, jpg, png): binary numbers
= |ntegers (int): binary numbers
= Non-integer real numbers (double): binary numbers
= Letters and words (ASCII, Unicode): binary numbers
= Music (mp3): binary numbers
= Movies (streaming): binary numbers
= Doge pictures (g#4): binary numbers

mail messages: binary numbers

5 are what tell us how to translate

e interpxet these binary digits as an igage, it would look like this”

if we interpré{(these lbi/@r))« d?gits\a@ song, it would sound like this”
/

Stanford University

ASCII is an old-school encoding for characters

= The “char” type in C++ is based on ASCI|
= You interacted with this a bit in WordLadder (e.g., ‘A+1 ='B’)
= Leftover from C in the 1970’s

= Doesn’t play nice with other languages, and today’s software
can'’t afford to be so America-centric, so Unicode is more
common

= ASCII is simple so we use it for this assignment

Stanford University

ASCII Table

Notice each symbol
IS encoded as 8
binary digits (8 bits)

There are 256
unique sequences
of 8 bits, so
numbers 0-255
each correspond to
one character

(this only shows 32-74)

00111110 = <

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

040
041
042
043
044
045
046
047
050

051
052
053
054
055
056
057
060
061
062
063
064

20
21
22
23
24
25
26
27
28

29
2A
2B
2C
2D
2E
2F
30
31
32
33
34

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000

00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100

=+ * N— A~

DwWwNPFRO~-

53
o4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112

35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
AN

00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010

O 00 N O O

GC—TOTMMOTOTI>O VvV

char ASCIT bit pattern (binary)

h 104 01101000
ASCII Example . 97 01100001
D 112 01110000
y 121 01111001
i 105 01101001
o 111 01101111
space 32 00100000

“happy hip hop” =
104 97 112 112 121 32 104 105 (decimal)

Or this in binary:
01101000 [01100001 [01110000 [01110000 [01111001 [00100000 [01101000

01101001 |01110000 (00100000 |01101000 (01101111 |O1110000

FAQ: Why does 104 = ‘h’?

Answer: it’s arbitrary, like most encodings. Some people in the
1970s just decided to make it that way.

Stanford University

[Aside] Unplugged programming :
The Binary Necklace

= Choose one color to represent 0’s and
another color to represent 1’s

= Write your name in beads by looking up
each letter’'s ASCII encoding

= For extra bling factor, this one uses glow-in-
the dark beads as delimiters between
letters

65 101 41 01000001
66 102 42 01000010
67 103 43 01000011
68 104 44 01000100
69 105 45 01000101
70 106 46 01000110
71 107 47 01000111
72 110 48 01001000
72 111 40 01001001

— I OTMMUOU0O >

ASCII

= ASCII’s uniform encoding size makes it easy

» Don’t really need those glow-in-the-dark beads as delimiters, because
we know every 9" bead starts a new 8-bit letter encoding

= Key insight: also a bit wasteful (ha! get it? a “bit”)
» What if we took the most commonly used._characters (according to
Wheel of Fortune, some of these arnd encoded them
with just 2 or 3 bits each?

> We let seldom-used characters, like &, have encodings that are
longer, say 12 bits.

» Overall, we would save a lot of space!

Stanford University

char bit pattern

h 01
. 000
Non-ASCII (variable-length) b 10
encoding example Ty 1111)
i 001
o 1110
space 110

“happ@‘nip hop” = o
01 [000 [10

<i:~_; 10 (1111|110 (O1 |OOT1 |10 (110 |O1 1110 |10

The variable-length encoding scheme makes a MUCH more
space-efficient message than ASCII:

01101000 4pP1100001 (®1110000 |01110000 (01111001 |00100000 01101000]DXS C/\\

01101001 |01110000 (00100000 01101000 (01101111 |O1110000

Stanford University

Huffman encoding

= Huffman encoding is a way of choosing which characters are encoded
which ways, customized to the specific file you are using

= Example: character ‘#
» Rarely used in Shakespeare (code could be longer, say ~10 bits)

» If you wanted to encode a Twitter feed, you'd see # a lot (maybe only
~4 bits) #contextmatters #thankshuffman

= \We store the code translation as a tree:

Your turn

What would be the binary encoding of “hippo” using this Huffman

encoding tree?
A. 11000
B. 0101101010
C. 0100110101110
D. 0100010101111
E. Other/none/more than one

Stanford University

Okay, so how do we make the tree?

1. Read your file and count how many times each character occurs

2. Make a collection of tree nodes, each_having a key = # of occurrenc
and a value = the character @ &)

Example: “c aaa bbb’ |
For now, tree nodes are not in atree Shape: —
We actually store them in @ue@ased on highest

priority = LOWEST # of occurrences

Next:

« Dequeue two nodes and make them the two children of a new node,
with no character and # of occurren IS the sum,

- Enqueue this new node TzT 4-@[TgT TST
* Repeat until PQ.size() ==

N

A

N

v

/ \- P + deem--- + +—;—;\—+
+“;“i }“‘E();‘* \ A
EhEl L 5117
Your turn L foooep pemeceg gemneet
If we start with th 3 | | E’ | 4 |

————— +
— / \
/N
$mm==- + $=----
| C | EOF
1 1
+--!---+ ==
/
+-:-:-+
| 2 |

I
I
“h:.j
+— P
_ S S £
I (P m
P~ 2
I I — —— o P
\+|+ “ “ o
1 MmN U
—~ I - i o
+— ! ! +—rs o)
1 F— I (o
1 I L =
® O S
L= L i
1 +— i wnn
— _ | ot
~ I I~
I VI
~ I I ™~
+—t I I S, F——t
1 ~ f—_— I
I~ I
< U
1™
I~ ——+
+— “ “ +—
I ™~
[I
I I
+——t
.
oM |
| =
o e e I
I 1 - f—_—
1 [
| D
| ™~
1 | ~ -+
+—t I I
| - i
N Taa Tl
- I
I
+—t .4.|+
n e
o . ikl
_ I
3 T
S I o
(e
o +— P ~t—
W o |~ | -
- _f.,. + <+ C
— I~ F—
(7)) +—F “ _ +—F
a I e
-1 L
+—t

Now assign codes 10 |
+----- +
We interpret the tree as: / \
L e / \ 1
= Leftchild=0 P P +
= Right child =1 ‘ |
4 6
+-----+ +----- +
- “«a10 / \ / \
What is the code for “c” o / \ 1 o / \ 1
A. 00 o= + m---- + e----- + e----- +
2 BN
@ 2 2 3 3
C. 101 +-=--- + +---=-- + +---=- + +----- +
D. Other/none 0 / \\ 1
+ +====- +
EOF
c |a]| b 1
010 (10| 11 !‘ oo +

Stanford University

Key question: How do we know when one character’s
bits end and another’s begin?

Huffman needs delimiters (like the glow-in-the-dark beads), unlike ASCII,

which is always 8 bits (and didn’t really need the beads).

A. TRUE
ALSE C

Discuss/prove it: why or why not?

% = O\ QO
C al|b
010 |10 | 11

