
Programming Abstractions

Cynthia Lee

C S 106X

Topics:

 Today we’re going to be talking about your next

assignment: Huffman coding

› It’s a compression algorithm

› It’s provably optimal (take that, Pied Piper)

› It involves binary tree data structures, yay!

› (assignment goes out Wednesday)

2

Getting Started on Huffman
Before we talk about the algorithm, let’s set the scene a bit and talk about

BINARY

In a computer, everything is numbers!

Specifically, everything is binary

 Images (gif, jpg, png): binary numbers

 Integers (int): binary numbers

 Non-integer real numbers (double): binary numbers

 Letters and words (ASCII, Unicode): binary numbers

 Music (mp3): binary numbers

 Movies (streaming): binary numbers

 Doge pictures (): binary numbers

 Email messages: binary numbers

Encodings are what tell us how to translate

› “if we interpret these binary digits as an image, it would look like this”

› “if we interpret these binary digits as a song, it would sound like this”

ASCII is an old-school encoding for characters

 The “char” type in C++ is based on ASCII

 You interacted with this a bit in WordLadder (e.g., ‘A’+1 = ‘B’)

 Leftover from C in the 1970’s

 Doesn’t play nice with other languages, and today’s software

can’t afford to be so America-centric, so Unicode is more

common

 ASCII is simple so we use it for this assignment

DEC OCT HEX BIN Symbol

32 040 20 00100000

33 041 21 00100001 !

34 042 22 00100010 "

35 043 23 00100011 #

36 044 24 00100100 $

37 045 25 00100101 %

38 046 26 00100110 &

39 047 27 00100111 '

40 050 28 00101000 (

41 051 29 00101001)

42 052 2A 00101010 *

43 053 2B 00101011 +

44 054 2C 00101100 ,

45 055 2D 00101101 -

46 056 2E 00101110 .

47 057 2F 00101111 /

48 060 30 00110000 0

49 061 31 00110001 1

50 062 32 00110010 2

51 063 33 00110011 3

52 064 34 00110100 4

DEC OCT HEX BIN Symbol

53 065 35 00110101 5

54 066 36 00110110 6

55 067 37 00110111 7

56 070 38 00111000 8

57 071 39 00111001 9

58 072 3A 00111010 :

59 073 3B 00111011 ;

60 074 3C 00111100 <

61 075 3D 00111101 =

62 076 3E 00111110 >

63 077 3F 00111111 ?

64 100 40 01000000 @

65 101 41 01000001 A

66 102 42 01000010 B

67 103 43 01000011 C

68 104 44 01000100 D

69 105 45 01000101 E

70 106 46 01000110 F

71 107 47 01000111 G

72 110 48 01001000 H

73 111 49 01001001 I

74 112 4A 01001010 J

ASCII Table

Notice each symbol

is encoded as 8

binary digits (8 bits)

There are 256

unique sequences

of 8 bits, so

numbers 0-255

each correspond to

one character
(this only shows 32-74)

00111110 = ‘<’

ASCII Example

“happy hip hop” =

104 97 112 112 121 32 104 105 (decimal)

Or this in binary:

FAQ: Why does 104 = ‘h’?

Answer: it’s arbitrary, like most encodings. Some people in the
1970s just decided to make it that way.

[Aside] Unplugged programming :
The Binary Necklace

DEC OCT HEX BIN Symbol

65 101 41 01000001 A

66 102 42 01000010 B

67 103 43 01000011 C

68 104 44 01000100 D

69 105 45 01000101 E

70 106 46 01000110 F

71 107 47 01000111 G

72 110 48 01001000 H

73 111 49 01001001 I

 Choose one color to represent 0’s and

another color to represent 1’s

 Write your name in beads by looking up

each letter’s ASCII encoding

 For extra bling factor, this one uses glow-in-

the dark beads as delimiters between

letters

ASCII

 ASCII’s uniform encoding size makes it easy

› Don’t really need those glow-in-the-dark beads as delimiters, because

we know every 9th bead starts a new 8-bit letter encoding

 Key insight: also a bit wasteful (ha! get it? a “bit”)

› What if we took the most commonly used characters (according to

Wheel of Fortune, some of these are RSTLNE) and encoded them

with just 2 or 3 bits each?

› We let seldom-used characters, like &, have encodings that are

longer, say 12 bits.

› Overall, we would save a lot of space!

Non-ASCII (variable-length)
encoding example

“happy hip hop” =

The variable-length encoding scheme makes a MUCH more

space-efficient message than ASCII:

Huffman encoding

 Huffman encoding is a way of choosing which characters are encoded

which ways, customized to the specific file you are using

 Example: character ‘#’

› Rarely used in Shakespeare (code could be longer, say ~10 bits)

› If you wanted to encode a Twitter feed, you’d see # a lot (maybe only

~4 bits) #contextmatters #thankshuffman

 We store the code translation as a tree:

Your turn

What would be the binary encoding of “hippo” using this Huffman

encoding tree?

A. 11000

B. 0101101010

C. 0100110101110

D. 0100010101111

E. Other/none/more than one

Okay, so how do we make the tree?

1. Read your file and count how many times each character occurs

2. Make a collection of tree nodes, each having a key = # of occurrences

and a value = the character

› Example: “c aaa bbb”

› For now, tree nodes are not in a tree shape

› We actually store them in a Priority Queue (yay!!) based on highest

priority = LOWEST # of occurrences

› Next:

• Dequeue two nodes and make them the two children of a new node,

with no character and # of occurrences is the sum,

• Enqueue this new node

• Repeat until PQ.size() == 1

Your turn

If we start with the Priority Queue above, and

execute one more step, what do we get?

(A)

(B)

(C)

Last two steps

Now assign codes

We interpret the tree as:

 Left child = 0

 Right child = 1

What is the code for “c”?

A. 00

B. 010

C. 101

D. Other/none

c a b

010 10 11

Key question: How do we know when one character’s
bits end and another’s begin?

c a b

010 10 11

Huffman needs delimiters (like the glow-in-the-dark beads), unlike ASCII,

which is always 8 bits (and didn’t really need the beads).

A. TRUE

B. FALSE

Discuss/prove it: why or why not?

