Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Topics Overview

Recently:
= Priority Queue implementations:
» linked list
» heap
= Map interface implementation:
» Binary Search Tree (BST)
= While we're doing trees, another kind of tree:
» Huffman coding trees (used for compression of files)

Today: Hashing:

= Another Map interface implementation
» Background: Lookup tables
» Details: Hashing

Stanford University

Hashing

Implementing the Map interface with Hashing/Hash Tables

PART 1: Intuition behind the invention of the hash table

Stanford University

Imagine you want to look up your
neighbors’ names, based on their
house number

House numbers: 10565 through 90600

= (roughly 1000 houses—there are varying
gaps in house numbers between houses)

= All the houses are on the same street, so we
only need to lookup by house number

Names: string containing the name(s) living
there

We will consider two data structure options:
linked list, and array of strings

Image dedicated to public domain under Creative Commons license:
http://commons.wikimedia.org/wiki/File:Salsbury_Row_House.jpg

Stanford University

Option #1: Linked list

10565, 10567, 90600,
head—
“Kyung Suk and “Isaiah White” “Josie Spencer
Yong Han Lee” and Solange
— Clark”
o Linked list:

o Struct has 3 fields: next pointer, int data (house number), and string data (name)
o Sort them by house number

o Add/remove: O(n)

o Find: O(n)

Index String value

(house (QEWE))

Option #2: Array of strings numben)

0 (134

o Array of strings: 1

o Index is house number, string is name

10565 “Yong Han and
Kyung Suk Lee”

10566

o Add/remove:

o Find: 10567 “Isaiah White”

90598
90599

90600 “Josie Spencer and
Solange Clark”

Stanford University

Array of Strings: Index String value

(house (QEWE))

Array of Strings ”mbe”

o Array of strings:

. . . 1 “n
o Index is house number, string is name(s)

10565 “Yong Han and
Kyung Suk Lee”

10566
10567 “Isaiah White”

90598
90599

90600 “Josie Spencer and
Solange Clark”

Stanford University

Array of strings:

Array of Strings

o Array of strings:
o Index is house number, string is name(s)

o Add/remove:

o EXx.:if somebody moves into the vacant
house at 90598, how long would it take to
update?

o Find:

o EX.:you wantto find the name of the resident

at 12475, if any

A, 0(1), O(1)

B. O(logn), O(logn)

c. 0O(n), O(n)

D. Other/none/combination

Index

(house
number)

10565

10566
10567

90598
90599
90600

String value
(QEWE))

“Yong Han and
Kyung Suk Lee”

“Isaiah White”

“Josie Spencer and
Solange Clark”

Stanford University

Array of strings:

Array of Strings

o Wow, excellent performance on both!!

o Only way to do better than O(1) is a time
machine that can go back in time and
make it take zero/negative time!

o Everything is awesome (?)

o Discuss: Can you identify 1-2 specific
areas of waste in this approach?

o Bonus: can you think of a simple fix for at least one
of the areas of waste?

Index

(house
number)

10565

10566
10567

90598
90599
90600

String value
(QEWE))

“Yong Han and
Kyung Suk Lee”

“Isaiah White”

“Josie Spencer and
Solange Clark”

Stanford University

Array of strings: HtEs String value

(house (QEWE))

One quick fix: “mbe”
/* When accessing the array, use array[hash(houseNum)] ;
* rather than array[houseNum]
*/
int hash(int houseNumber){ 10565 “Yong Han and
return houseNumber-10565; Kyung Suk Lee”
} 10566
10567 “Isaiah White”
o This solves the problem of the enormous gap from
0 to 10565
> So our array size could be ~80,000 entries instead of 90598 ©
90,600 90599
o Doesn’t solve the problem of gaps between houses 90600 “Josie Spencer and
o How could we do that? A tricky problem... Solange Clark”

o This approach only works for keys of type int

Stanford University

Hashing

Implementing the Map interface with Hashing/Hash Tables

PART 2: Getting the MAGICAL performance of our simple house numbers
example on any key type, and with less waste

Stanford University

Hash Table is just a modified, more flexible array

= Keys don’t have to be integers in the range [0-(size-1)]

> They don’t even have to be integers at all!

= (ldeally) avoids big gaps like we had with house numbers array
= Replicates the MAGICAL performance of our array of strings

on ANY key/value!!

THANK YOU, HASH
FUNCTION!' 9@ @

hash code indexable hash

table

Not

necessarily
int int in range [0-(size-1)]

> value

Stanford University

hash() function

This is where the MAGIC happens!

>

)

These are typically mathematically sophisticated functions

They do their best to ensure a nice uniform distribution of elements
across the available array (hash table)

They use tricks like modulus (remainder) and prime numbers to do
this

A lot of art & science, beyond the scope of this class

Fun times!

Stanford University

Hashing

Implementing the Map interface with Hashing/Hash Tables

Stanford University

Hash table inserts
index

Let’s pretend we have a profoundly not- 0
mathematically-sophisticated hash function: 1

int hash(string key) { 2 (A) "Annie", 3

return key.length(); 3 (B) "Annie", 3

} 4 (C) "Annie", 3

o Where does key="Annie" value=3 go? 5 (D) "Annie", 3
HashMap<string,int> mymap; 6
mymap["Annie"] = 3; 7
See choices in table at right, or: 8

(E) Some other place
Map
key —| hash(key)-D12s.code .| indexable hash 1{ o yzjye

Stanford University

Hash table inserts Array

index

Hashed data

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {
return key.length();

©® N o s ®WN P O IIII

} . "Annie", 3
o Where does key="Michael", value=5

go?

mymap["Michael"] = 5;

Map
hash code indexable hash
key —>| hash(key) ndex table > value
Stanford University

Hash table inserts Array

index

Hashed data

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {
return key.length();

OO\ICDU'I-bwl\DI—\O.

} . "Annie", 3
o Where does key="Michael", value=5

go? s "

mymap["Michael"] = 5; Michael", 5

Map
hash code indexable hash
key —>| hash(key) ndex table > value
Stanford University

Hash table inserts Array
index

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {
return key.length();

0
1
2
3
4
5
6
7
8

} i (A) "Annie", 3 7
o Now insert key="Annie", value=7

mymap["Annie"] = 7; (B) " .

See choices in table at right, or: "Annie”, 7

(C) Index 5 should store both
"Annie", 3 and "Annie",7
Map
key —| hash(key)-D12s.code .| indexable hash 1{ o yzjye
Stanford University

Hash table inserts Array
index

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {
return key.length();

0
1
2
3
4
)

b () "annie”s 7
o Now Insert key="Maria", value=8 "Maria", 8
mymap["Maria"] = 8; 6 (B) "Maria", 8
See choices in table at right, or: 7 "Michael", 5
(D) Index 5 should store both 8 (C) "Maria", 8

"Annie",7 and "Maria",8
Map

hash code indexable hash

key —>| hash(key) ndex table > value

Stanford University

Uh-oh! Hash collisions

We can NOT overwrite the value the way we would if it really were
the same key

Can you imagine how you would feel if you used Stanford library
HashMap like this and it printed 87!

mymap["Annie"] = 3;

mymap["Annie"] = 7;

cout << mymap["Annie"] << endl; //expect 7, not 3
mymap["Maria"] = 8;

cout << mymap["Annie"] << endl; //expect 7, not 8!!!

Stanford University

Uh-oh! Hash collisions

We may need to worry about hash collisions
Map

hash(key)-Dash.code 5 | indexable hash

index table > value

key —

Hash collision:

= Two keys a, b, a#b, have the same hash code index (i.e.
hash(a) == hash(b))

Need a way of storing multiple values in a given “place” in the

hash table, so all user’s data is preserved

Stanford University

Uh-oh! Hash collisions Array
index

There are two main strategies for resolving

this:

1. Put the item in the next bin (as in the
(B) choice from our previous slide)—
this is called “open addressing”

2. Make each bin be the head of a linked

(A) "Annie"s—7

list, and elements can chain off each el g 8
other as long as needed—this is called (B) "Maria”, 8
"Michael", 5

0
1
2
3
4
5
6
7
8

“closed addressing”
(C) "Maria", 8

Map

hash code indexable hash

key —>| hash(key) ndex table > value

Stanford University

Map Interface: hash-map.h

private:
struct node {
Key key;
Value value;
node *next;

}s

node **buckets; /

int numBuckets;
int count;
int hash(const Key& key) const;

}s

Stanford University

HashMap

private:
struct node {
Key key;
Value value;
node *next;

}s

node **buckets;

int numBuckets;

int count;

int hash(const Key& key) const;
}s

// Q: Can you draw the HashMap

// object in this memory diagram,
// including filling in values for
// all fields?

NULL

NULL

NULL

000

NULL

NULL

—J
ElE

Stanford University

Hash key collisions & Big-O of HashMap

If there are no collisions, find/add/remove are all O(1)—just compute the
key and go!
Two factors for ruining this magical land of instantaneous lookup:
= Too-small table (worst case = 1)
Hash function doesn’t produce a good spread
int awfulHashFunction(string input) {
. return 4;
-}

Find/add/remove all O(n) worst case

// h/t http://xkcd.com/221/

Stanford University

The Birthday Problem

Commonly mentioned fact of probability theory:

In a group of n people, what are the odds that 2 people have the same
birthday?

» (assume birthdays are uniformly distributed across 365 days, which is
wrong in a few ways)

» Forn =23, itis more likely than not
= Forn =57, >99% chance

Moral of the story: hash tables almost certainly have
at least one collision

Stanford University

