
Programming Abstractions

Cynthia Lee

C S 106X

Upcoming Topics

Graphs!

1. Basics

 What are they? How do we represent them?

2. Theorems

 What are some things we can prove about graphs?

3. Breadth-first search on a graph

 Spoiler: just a very, very small change to tree version

4. Dijkstra’s shortest paths algorithm

 Spoiler: just a very, very small change to BFS

5. A* shortest pathsalgorithm

 Spoiler: just a very, very small change to Dijkstra’s

6. Minimum Spanning Tree

 Kruskal’s algorithm

Graphs
What are graphs? What are they good for?

Graph

This file is licensed under the Creative Commons Attribution 3.0 Unported license. Jfd34 http://commons.wikimedia.org/wiki/File:Ryan_ten_Doeschate_ODI_batting_graph.svg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:Jfd34&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Ryan_ten_Doeschate_ODI_batting_graph.svg

A Social Network

Slide by Keith Schwarz

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gifSlide by Keith Schwarz

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg Slide by Keith Schwarz

Internet

8

This file is licensed under the Creative Commons Attribution 2.5 Generic license. The Opte Project http://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/2.5/deed.en
http://commons.wikimedia.org/w/index.php?title=Barrett_Lyon&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg

A graph is a mathematical structure for representing
relationships

Consists of:

 A set V of vertices (or nodes)

› Often have an associated label

 A set E of edges (or arcs)

› Consist of two endpoint vertices

› Often have an associated cost or weight

 A graph may be directed (an edge from A to B only allow
you to go from A to B, not B to A) or undirected (an edge
between A and B allows travel in both directions)

 We talk about the number of vertices or edges as the size of
the set, using the notation |V| and |E|

Boggle as a graph

Vertex = letter cube; Edge = connection to neighboring cube

Maze as graph

If a maze is a graph, what is a vertex and what is an edge?

Graphs
How do we represent graphs in code?

Diagram shows a graph with four vertices:

Apple (outgoing edges to banana and blum)

Banana (with outgoing edge to self)

Pear (with outgoing edges to banana and plum)

Plum (with outgoing edge to banana)

Graph terminology

This is a DIRECTED graph

This is an UNDIRECTED graph

Diagrams each show a graph with four

vertices: Apple, Banana, Pear, Plum. Each

answer choice has different edge sets.

A: no edges

B: Apple to Plum directed, Apple to banana

undirected

C: Apple and Banana point to each other.

Two edges point from Plum to Pear

Graph terminology

Which of the following is a correct graph?

A. B. C.

D. None of the

above/other/more than

one of the above

Paths

path: A path from vertex a to b is a sequence of edges that can

be followed starting from a to reach b.

 can be represented as vertices visited, or edges taken

 example, one path from V to Z: {b, h} or {V, X, Z}

 What are two paths from U to Y?

path length: Number of vertices

or edges contained in the path.

neighbor or adjacent: Two vertices

connected directly by an edge.

 example: V and X

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

Reachability, connectedness

reachable: Vertex a is reachable from b

if a path exists from a to b.

connected: A graph is connected if every

vertex is reachable from every other.

complete: If every vertex has a direct

edge to every other.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

a

c

b

d

a

c

b

d

e

Loops and cycles

cycle: A path that begins and ends at the same node.

 example: {V, X, Y, W, U, V}.

 example: {U, W, V, U}.

 acyclic graph: One that does

not contain any cycles.

loop: An edge directly from

a node to itself.

 Many graphs don't allow loops.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

Weighted graphs

weight: Cost associated with a given edge.

 Some graphs have weighted edges, and some are unweighted.

 Edges in an unweighted graph can be thought of as having equal weight

(e.g. all 0, or all 1, etc.)

 Most graphs do not allow negative weights.

example: graph of airline flights, weighted by miles between cities:

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

Representing Graphs: Adjacency Matrix

We can represent a graph as a

Grid<bool> (unweighted)

or

Grid<int> (weighted)

Representing Graphs: adjacency list

Node Connected To

Map<Node*, Set<Node*>> We can represent a graph

as a map from nodes to the

set of nodes each node is

connected to.

Slide by Keith Schwarz

Common ways of representing graphs

Adjacency list:

 Map<Node*, Set<Node*>>

Adjacency matrix:

 Grid<bool> unweighted

 Grid<int> weighted

How many of the following are true?

 Adjacency list can be used for directed graphs

 Adjacency list can be used for undirected graphs

 Adjacency matrix can be used for directed graphs

 Adjacency matrix can be used for undirected graphs

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Graphs
Theorems about graphs

Graphs lend themselves to fun theorems
and proofs of said theorems!

Any graph with 6 vertices contains either a

triangle (3 vertices with all pairs having an

edge) or an empty triangle (3 vertices no two

pairs having an edge)

Diagram shows a graph with four vertices,

which are all fully connected with each

other by undirected edges (6 edges in

total).

Eulerian graphs

Let G be an undirected graph

A graph is Eulerian if it can

drawn without lifting the pen

and without repeating edges

Is this graph Eulerian?

A. Yes

B. No

Diagram shows a graph with five vertices,

four of which are all fully connected with

each other by undirected edges (6 edges in

total). The 5th vertex is connected to two of

the remaining four vertices by an edge. (6

+ 2 = 8 edges in total)

Eulerian graphs

Let G be an undirected graph

A graph is Eulerian if it can

drawn without lifting the pen

and without repeating edges

What about this graph

A. Yes

B. No

Our second graph theorem

Definition: Degree of a vertex: number of edges adjacent to it

Euler’s theorem: a connected graph is Eulerian iff the number of

vertices with odd degrees is either 0 or 2 (eg all vertices or all but

two have even degrees)

Does it work for and ?

Breadth-First Search
Graph algorithms

Breadth-First Search

A B

E F

C D

G H

I J

L

K

BFS is useful for finding

the shortest path

between two nodes.

Example:

What is the shortest way to

go from F to G?

Breadth-First Search

A B

E F

C D

G H

I J

L

K

BFS is useful for finding

the shortest path

between two nodes.

Example:

What is the shortest way to

go from F to G?

Way 1: F->E->I->G

3 edges

Breadth-First Search

A B

E F

C D

G H

I J

L

K

BFS is useful for finding

the shortest path

between two nodes.

Example:

What is the shortest way to

go from F to G?

Way 2: F->K->G

2 edges

BFS is useful for finding

the shortest path

between two nodes.

Map Example:

What is the shortest way to

go from Yoesmite (F) to

Palo Alto (J)?

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

Breadth-First Search

TO START:

(1)Color all nodes GREY

(2)Queue is empty

Yoesmite

Palo Alto

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

TO START (2):

(1)Enqueue the desired

start node

(2)Note that anytime we

enqueue a node, we

mark it YELLOW

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

LOOP PROCEDURE:

(1)Dequeue a node

(2)Mark current node

GREEN

(3)Set current node’s

GREY neighbors’ parent

pointers to current node,

then enqueue them

(remember: set them

YELLOW)

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

I

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

You predict the next

slide!

A. K’s neighbors F,G,H are

yellow and in the queue and

their parents are pointing to K

B. K’s neighbors G,H are yellow

and in the queue and their

parents are pointing to K

C. K’s neighbors G,H are yellow

and in the queue

D. Other/none/more

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L
J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Done!

Now we know that to go

from Yoesmite (F) to Palo

Alto (J), we should go:

F->E->I->L->J

(4 edges)

(note we follow the parent

pointers backwards)

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:

(1) We used a queue

(2) What’s left is a kind of

subset of the edges, in

the form of ‘parent’

pointers

(3) If you follow the parent

pointers from the desired

end point, you will get

back to the start point,

and it will be the shortest

way to do that

Quick question about efficiency…

Let’s say that you have an extended family

with somebody in every city in the western

U.S.

Quick question about efficiency…

You’re all going to fly to Yosemite for a

family reunion, and then everyone will rent a

car and drive home, and you’ve been tasked

with making custom Yosemite-to-home

driving directions for everyone.

Quick question about efficiency…

You calculated the shortest path for yourself to return home from the
reunion (Yosemite to Palo Alto) and let’s just say that it took time
X = O((|E| + |V|)log|V|)

• With respect to the number of cities |V|, and the number of
edges or road segments |E|

How long will it take you, in total, to calculate the shortest path for
you and all of your relatives?

A. O(|V|*X)

B. O(|E|*|V|* X)

C. X

D. Other/none/more

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:

(4) We now have the

answer to the question

“What is the shortest path

to you from F?” for every

single node in the

graph!!

