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Graphs Topics

Graphs!

1. Basics

 What are they? How do we represent them?

2. Theorems

 What are some things we can prove about graphs?

3. Breadth-first search on a graph

 Spoiler: just a very, very small change to tree version

4. Dijkstra’s shortest paths algorithm

 Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm

 Spoiler: just a very, very small change to Dijkstra’s

6. Minimum Spanning Tree 

 Kruskal’s algorithm



● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green.  The candidate distance d that is currently stored for node u is the length of the 

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm
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Dijkstra's Algorithm

● Split nodes apart into three groups:

● Green nodes, where we already have the shortest path;

● Gray nodes, which we have never seen; and

● Yellow nodes that saw just long enough to enqueue, but we still need to process.

● Dijkstra's algorithm works as follows:

● Mark all nodes gray except the start node, which is yellow and has cost 0.

● Until no yellow nodes remain:

– Choose the yellow node with the lowest total cost.

– Mark that node green.

– Mark all its gray neighbors yellow and with the appropriate cost.

– Update the costs of all adjacent yellow nodes by considering the path through 

the current node.



HOMEWORK: An Important Note

 The version of Dijkstra's algorithm I have just described is not the 

same as the version described in the course reader.

 This version is more complex than the book's version, but is faster.

 THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER 

ASSIGNMENT!



How Dijkstra's Works

● Situation:

● Dijkstra's algorithm works by incrementally computing the shortest 
path to intermediary nodes in the graph in case they prove to be 
useful.

● Problem:

● No big-picture conception of how to get to the destination – the 
algorithm explores outward in all directions, “in case.”

● Implication:

● Most of these explored nodes will end up being in completely the 
wrong direction.

● Need:

● Could we give the algorithm a “hint” of which direction to go?



A* and Dijkstra’s
Close cousins



Heuristics

● In the context of graph searches, a heuristic function is a function that 

guesses the distance from some known node to the destination node.

● The guess doesn't have to be correct, but it should try to be as accurate 

as possible.

● Examples: For Google Maps, a heuristic for estimating distance might 

be the straight-line “as the crow flies” distance.

Admissible Heuristics

● A heuristic function is called an admissible heuristic if it never 

overestimates the distance from any node to the destination.

● In other words:

● predicted-distance ≤ actual-distance



Why Heuristics Matter

● We can modify Dijkstra's algorithm by introducing 

heuristic functions.

● Given any node u, there are two associated costs:

●

● The actual distance from the start node s.

● The heuristic distance from u to the end node t.

● Key idea: Run Dijkstra's algorithm, but use the following 

priority in the priority queue:

● priority(u) = distance(s, u) + heuristic(u, t)   

● This modification of Dijkstra's algorithm is called the 

A* search algorithm.

s tu



A* Search

 As long as the heuristic is admissible (and satisfies one other 

technical condition), A* will always find the shortest path from 

the source to the destination node.

 Can be dramatically faster than Dijkstra's algorithm.

 Focuses work in areas likely to be productive.

 Avoids solutions that appear worse until there is 
evidence they may be appropriate.



● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green.  The candidate distance d that is currently stored for node u is the length of the 

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm



● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority h(s,t).
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green.  The candidate distance d that is currently stored for node u is the length of the 

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L + h(v,t).

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L + h(v,t).

A* Search



A* on two points where the heuristic is slightly misleading 
due to a wall blocking the way



A* starts with start node yellow, other nodes grey.



A*: dequeue start node, turns green.
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A*: enqueue neighbors with candidate distance + heuristic 
distance as the priority value.
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A*: dequeue min-priority-value node.
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A*: enqueue neighbors.
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Now we’re done with the 
green “1” node’s turn. 

What is the next node to 
turn green? (and what 
would it be if this were 
Dijkstra’s?)
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A*: dequeue next lowest priority value node. Notice we are making a 
straight line right for the end point, not wasting time with other directions.
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A*: enqueue neighbors—uh-oh, wall blocks us from 
continuing forward.
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A*: eventually figures out how to go around the wall, with 
some waste in each direction. 
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● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green.  The candidate distance d that is currently stored for node u is the length of the 

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm



● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority h(s,t).
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green.  The candidate distance d that is currently stored for node u is the length of the 

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L + h(v,t).

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L + h(v,t).

A* Search



Minimum Spanning Tree



A spanning tree in an undirected graph is a set of edges 

with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree 

with the least total cost.
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Kruskal’s algorithm

Remove all edges from graph

Place all edges in a PQ based on length/weight

While !PQ.isEmpty():

 Dequeue edge

 If the edge connects previous disconnected 

nodes or groups of nodes, keep the edge

 Otherwise discard the edge



Kruskal’s algorithm



The Good Will Hunting Problem



Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU

https://www.youtube.com/watch?v=N7b0cLn-wHU


“Draw all the homeomorphically irreducible trees with n=10.”



“Draw all the homeomorphically irreducible 
trees with n=10.”

In this case “trees” simply means graphs with no cycles

“with n = 10” (i.e., has 10 nodes)

“homeomorphically irreducible” 

 No nodes of degree 2 allowed in your solutions

› For this problem, nodes of degree 2 are useless in 

terms of tree structure—they  just act as a blip on an 

edge—and are therefore banned

 Have to be actually different

› Ignore superficial changes in rotation or angles of 

drawing


