

Programming Abstractions

CS106X

Cynthia Lee

Graphs Topics

Graphs!

1. Basics

- What are they? How do we represent them?

2. Theorems

- What are some things we can prove about graphs?

3. Breadth-first search on a graph

- Spoiler: just a very, very small change to tree version

4. Dijkstra's shortest paths algorithm

- Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm

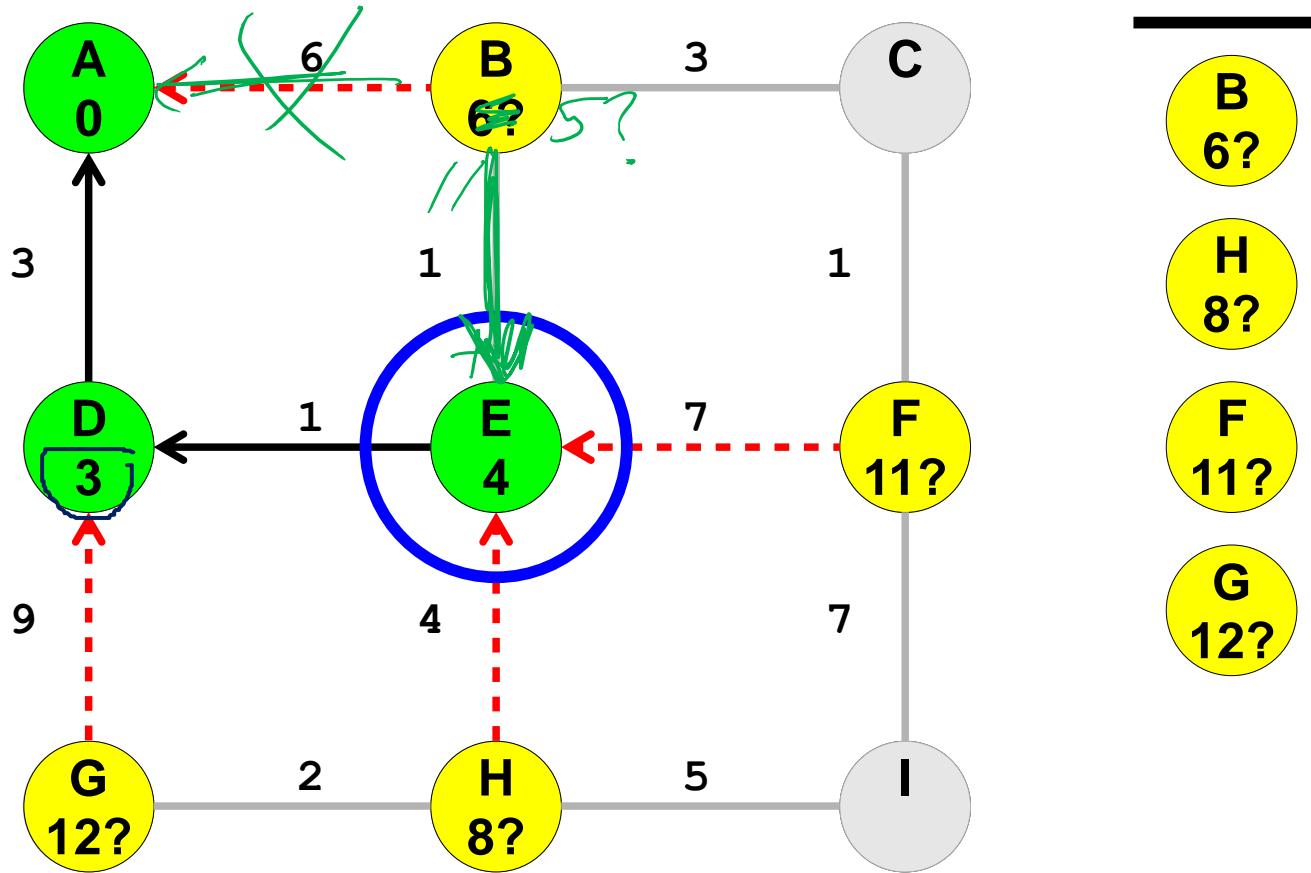
- Spoiler: just a very, very small change to Dijkstra's

6. Minimum Spanning Tree

- Kruskal's algorithm

- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0 .
- Enqueue s into the priority queue with priority 0 .
- While not all nodes have been visited:
- Dequeue the lowest-cost node u from the priority queue.
- Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u .
- If u is the destination node t , you have found the shortest path from s to t and are done.
- For each node v connected to u by an edge of length L :
 - If v is gray:
 - Color v yellow.
 - Mark v 's distance as $d + L$.
 - Set v 's parent to be u .
 - Enqueue v into the priority queue with priority $d + L$.
 - If v is yellow and the candidate distance to v is greater than $d + L$:
 - Update v 's candidate distance to be $d + L$.
 - Update v 's parent to be u .
 - Update v 's priority in the priority queue to $d + L$.

Dijkstra's Algorithm



Dijkstra's Algorithm

- Split nodes apart into three groups:
 - Green nodes, where we already have the shortest path;
 - Gray nodes, which we have never seen; and
 - Yellow nodes that saw just long enough to enqueue, but we still need to process.
- Dijkstra's algorithm works as follows:
 - Mark all nodes gray except the start node, which is yellow and has cost 0.
 - Until no yellow nodes remain:
 - Choose the yellow node with the lowest total cost.
 - Mark that node green.
 - Mark all its gray neighbors yellow and with the appropriate cost.
 - Update the costs of all adjacent yellow nodes by considering the path through the current node.

HOMEWORK: An Important Note

- The version of Dijkstra's algorithm I have just described is ***not*** the same as the version described in the course reader.
- This version is more complex than the book's version, but is faster.
- **THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER ASSIGNMENT!**

How Dijkstra's Works

- **Situation:**
 - Dijkstra's algorithm works by incrementally computing the shortest path to intermediary nodes in the graph *in case* they prove to be useful.
- **Problem:**
 - No big-picture conception of how to get to the destination – the algorithm explores outward in all directions, “in case.”
- **Implication:**
 - Most of these explored nodes will end up being in completely the wrong direction.
- **Need:**
 - **Could we give the algorithm a “hint” of which direction to go?**

A* and Dijkstra's

Close cousins

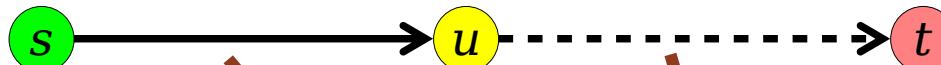
Heuristics

- In the context of graph searches, a **heuristic function** is a function that guesses the distance from some known node to the destination node.
- The guess doesn't have to be correct, but it should try to be as accurate as possible.
- Examples: For Google Maps, a heuristic for estimating distance might be the straight-line “as the crow flies” distance.

Admissible Heuristics

- A heuristic function is called an **admissible heuristic** if it never overestimates the distance from any node to the destination.
- In other words:
 - $\text{predicted-distance} \leq \text{actual-distance}$

Why Heuristics Matter

- We can modify Dijkstra's algorithm by introducing heuristic functions.
- Given any node u , there are two associated costs:
 - 
 - The actual distance from the start node s .
 - The heuristic distance from u to the end node t .
- Key idea: Run Dijkstra's algorithm, but use the following priority in the priority queue:
 - $priority(u) = distance(s, u) + heuristic(u, t)$
- This modification of Dijkstra's algorithm is called the **A* search algorithm**.

A* Search

- As long as the heuristic is admissible (and satisfies one other technical condition), A* will always find the shortest path from the source to the destination node.
- Can be *dramatically* faster than Dijkstra's algorithm.
- Focuses work in areas likely to be productive.
- Avoids solutions that appear worse *until* there is evidence they may be appropriate.

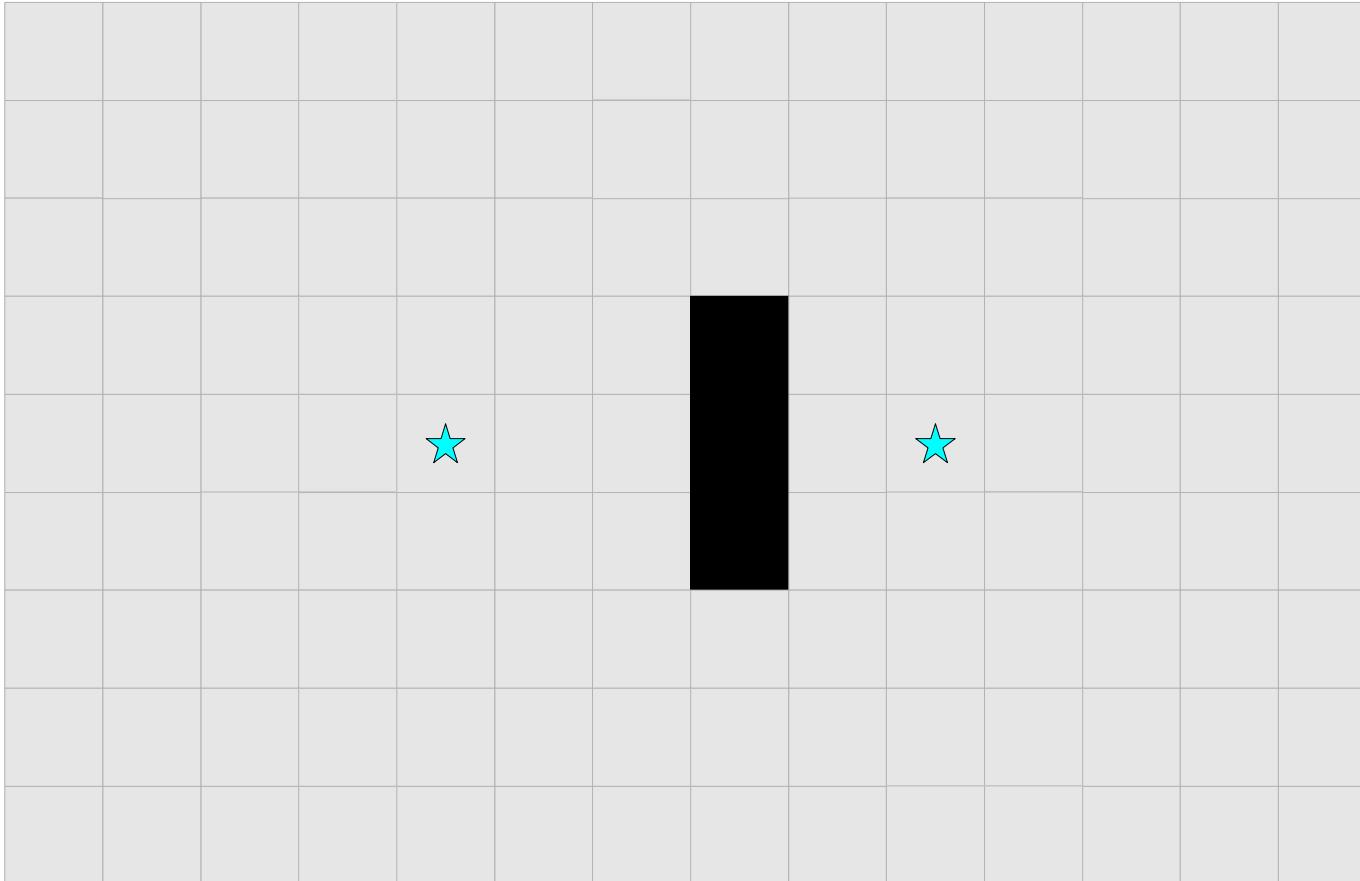
- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0 .
- Enqueue s into the priority queue with priority 0 .
- While not all nodes have been visited:
 - Dequeue the lowest-cost node u from the priority queue.
 - Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u .
 - If u is the destination node t , you have found the shortest path from s to t and are done.
 - For each node v connected to u by an edge of length L :
 - If v is gray:
 - Color v yellow.
 - Mark v 's distance as $d + L$.
 - Set v 's parent to be u .
 - Enqueue v into the priority queue with priority $d + L$.
 - If v is yellow and the candidate distance to v is greater than $d + L$:
 - Update v 's candidate distance to be $d + L$.
 - Update v 's parent to be u .
 - Update v 's priority in the priority queue to $d + L$.

Dijkstra's Algorithm

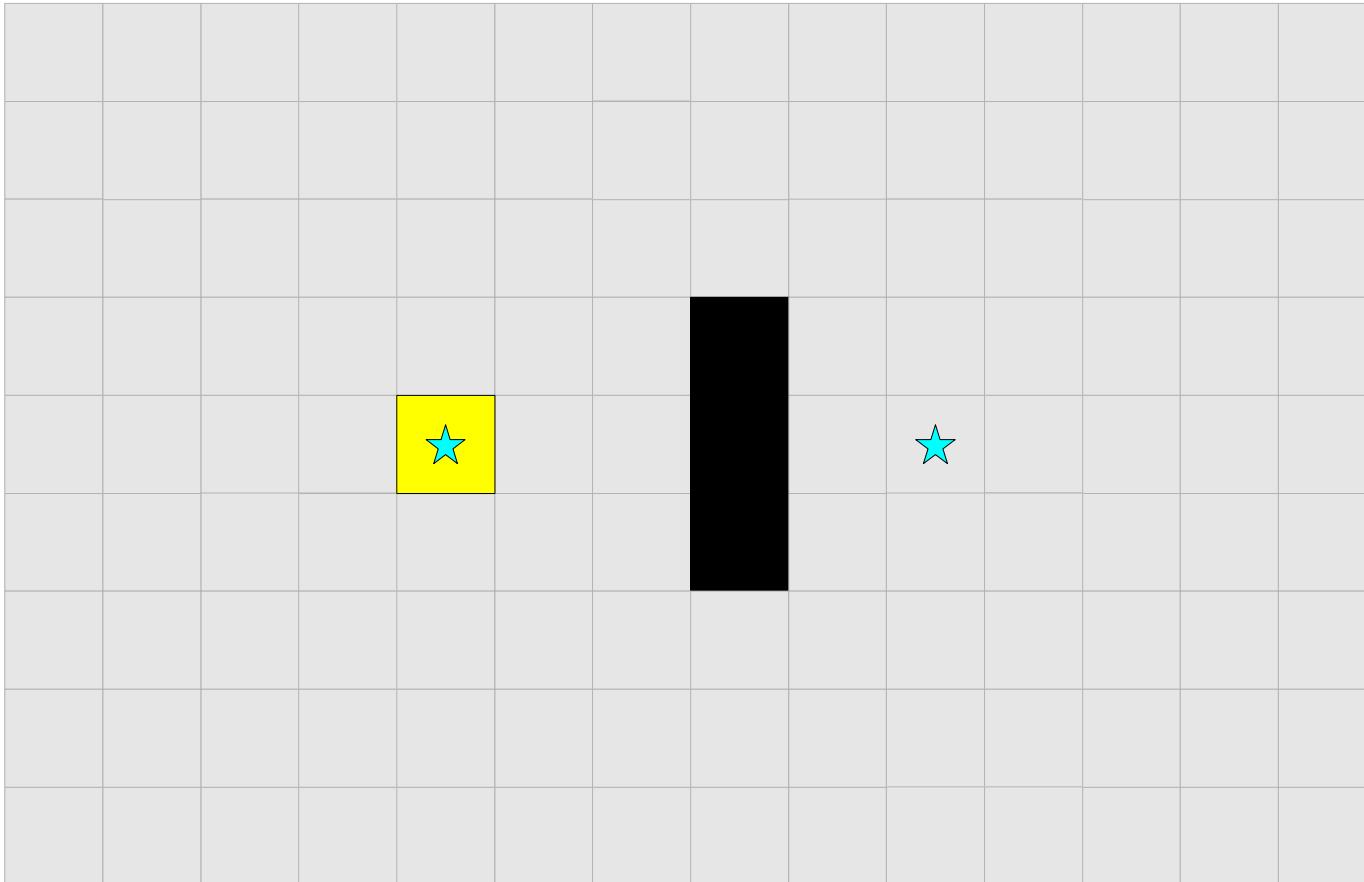
- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0 .
- Enqueue s into the priority queue with priority $h(s,t)$.
- While not all nodes have been visited:
 - Dequeue the lowest-cost node u from the priority queue.
 - Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u .
 - If u is the destination node t , you have found the shortest path from s to t and are done.
 - For each node v connected to u by an edge of length L :
 - If v is gray:
 - Color v yellow.
 - Mark v 's distance as $d + L$.
 - Set v 's parent to be u .
 - Enqueue v into the priority queue with priority $d + L + h(v,t)$.
 - If v is yellow and the candidate distance to v is greater than $d + L$:
 - Update v 's candidate distance to be $d + L$.
 - Update v 's parent to be u .
 - Update v 's priority in the priority queue to $d + L + h(v,t)$.

A* Search

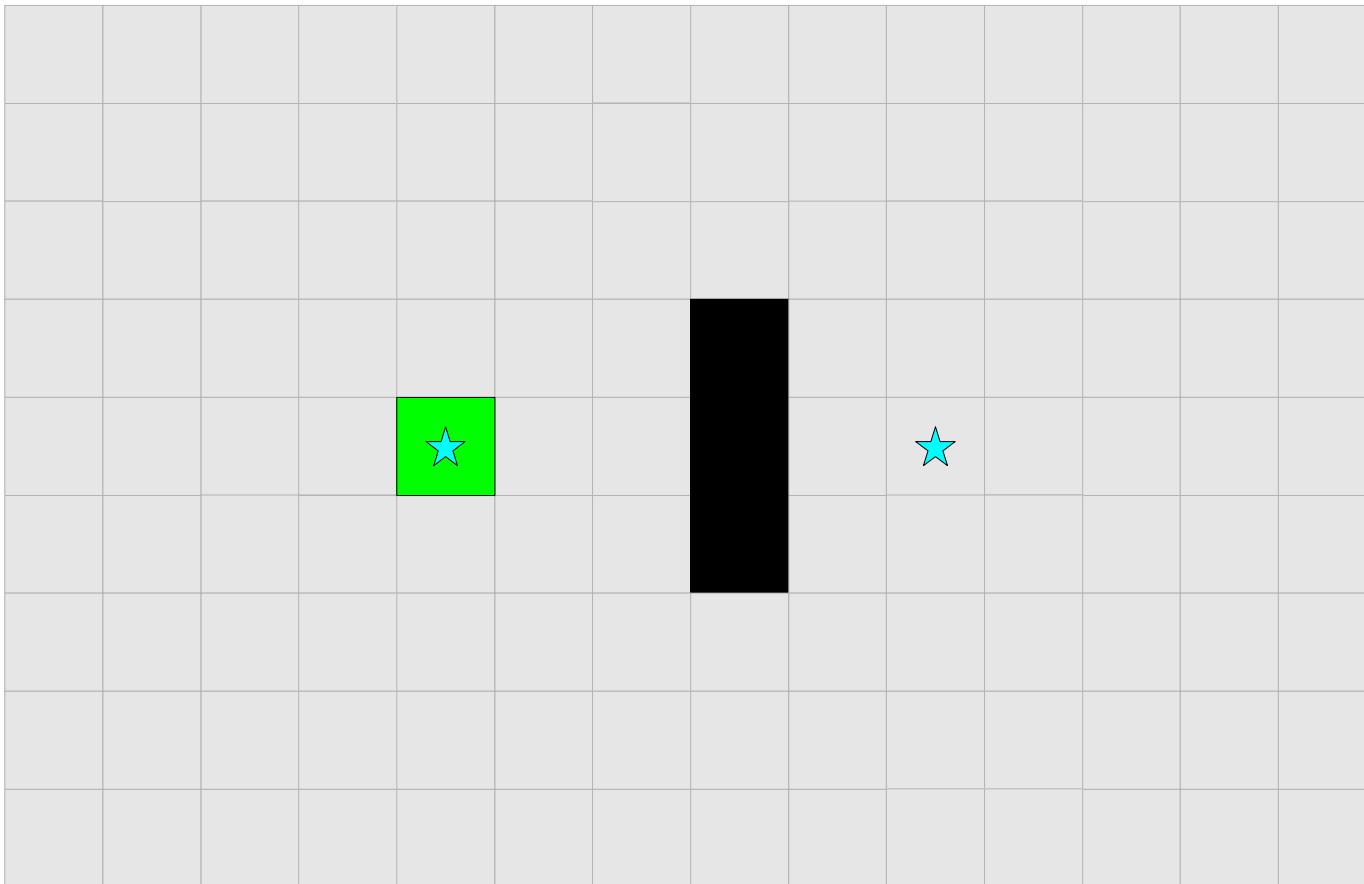
**A* on two points where the heuristic is slightly misleading
due to a wall blocking the way**



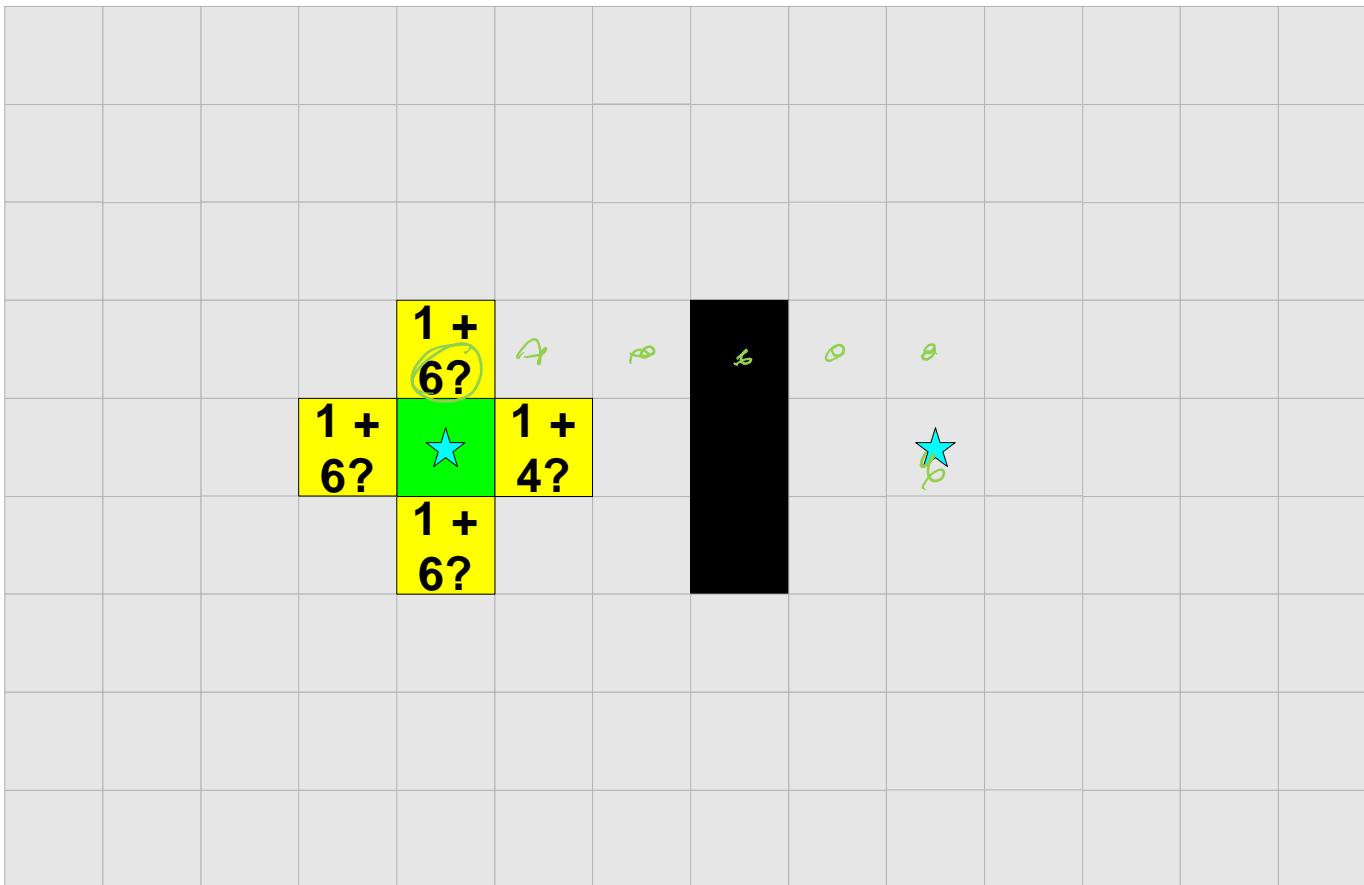
A* starts with start node yellow, other nodes grey.



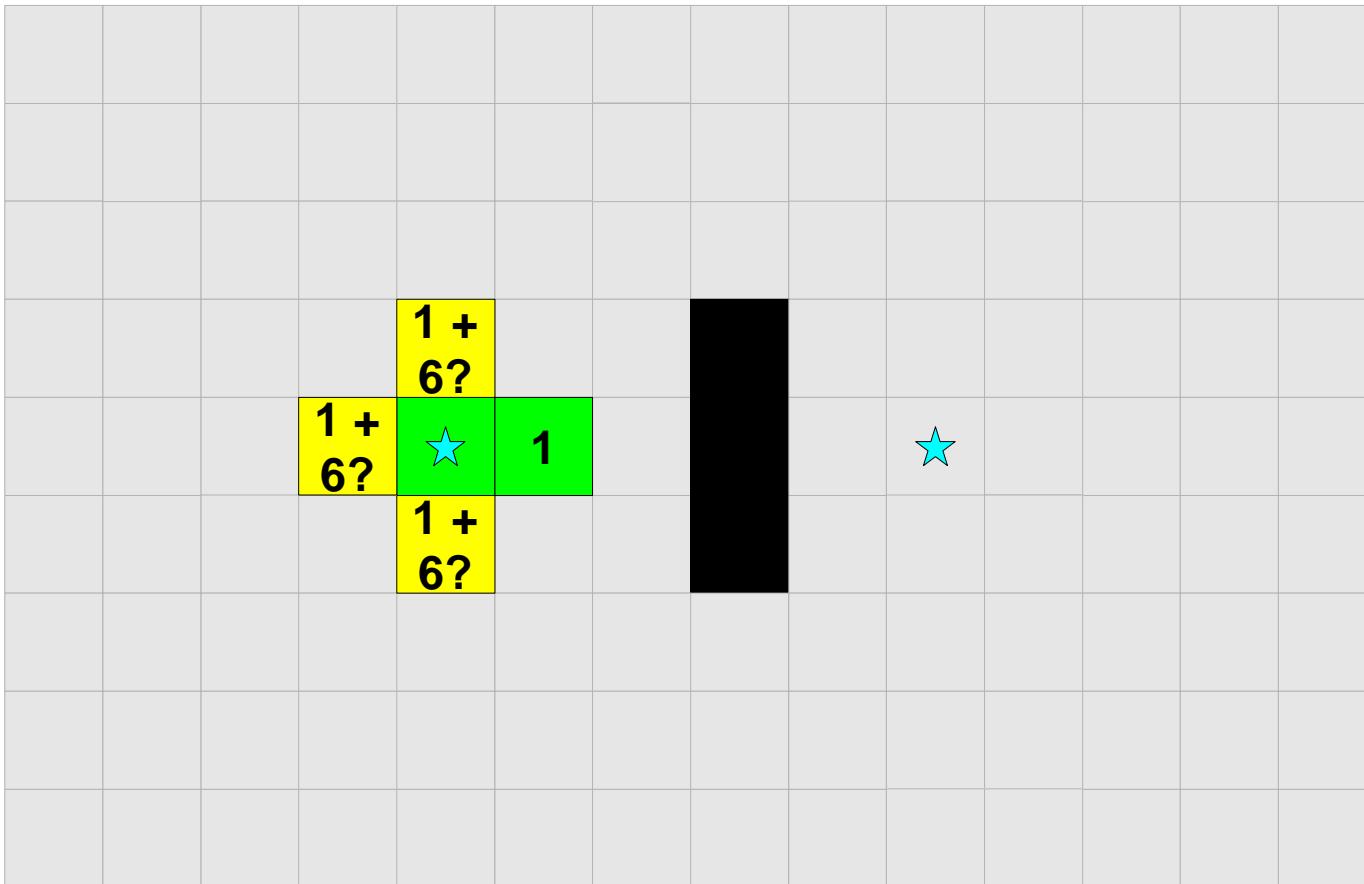
A*: dequeue start node, turns green.



A*: enqueue neighbors with candidate distance + heuristic distance as the priority value.



A*: dequeue min-priority-value node.



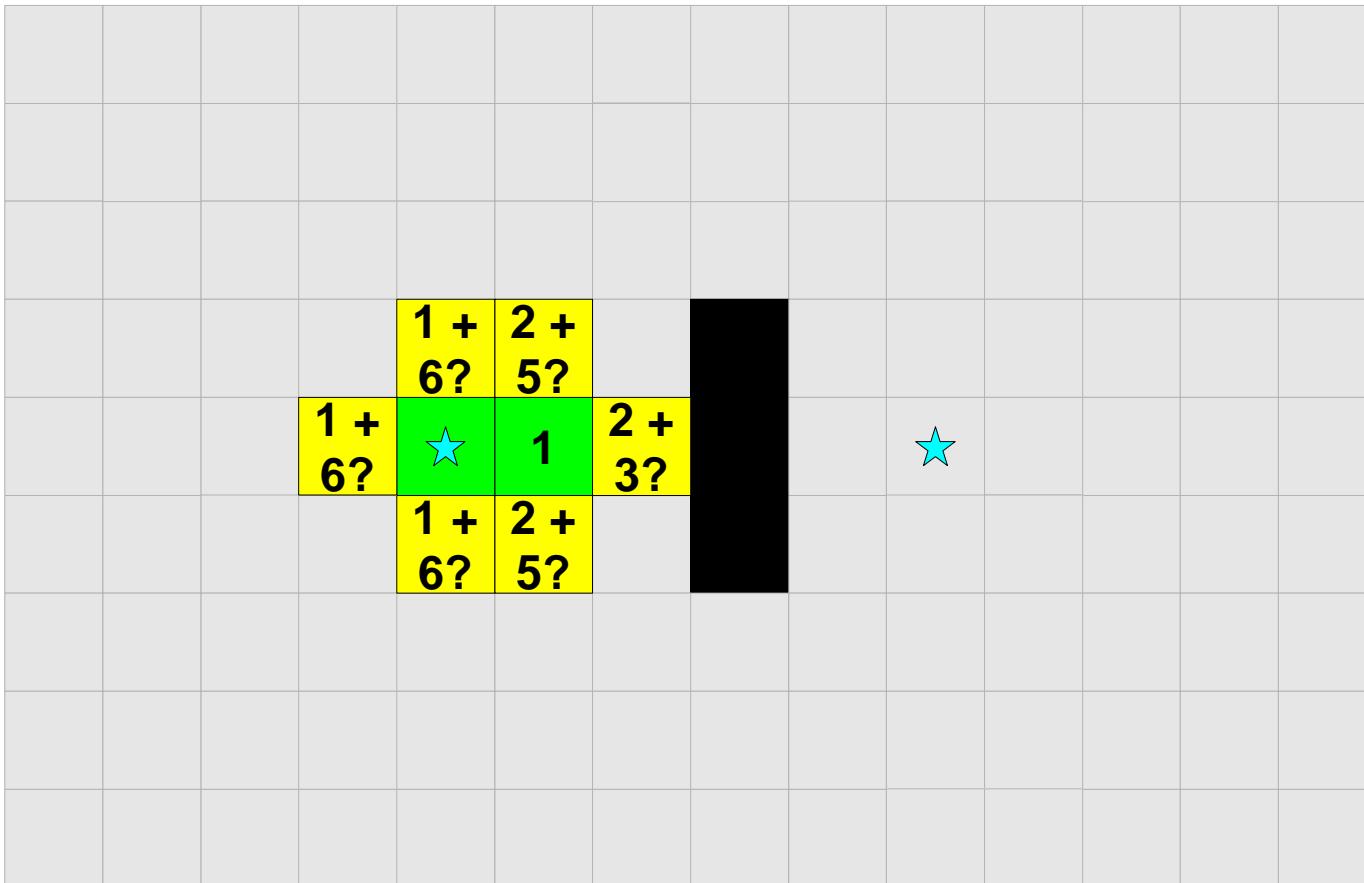
What goes in the **???** ?

- A. $2 + 5$?
- B. $1 + 6$?
- C. $2 + 4$?
- D. Other/none/more

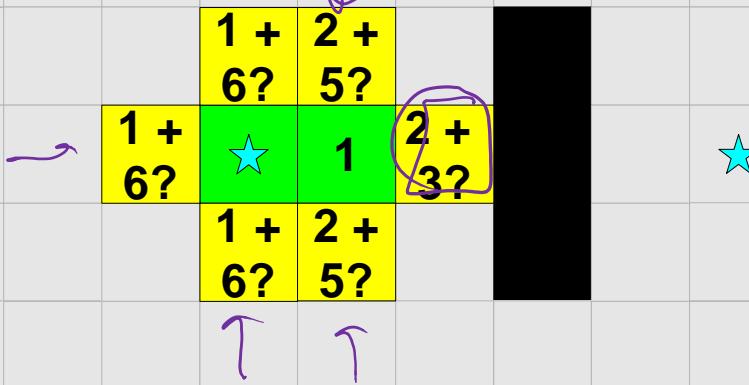
Handwritten note: Other/none/more

	$1 +$ 6?	$2 +$ 5?		
$1 +$ 6?		1	???	
	$1 +$ 6?	$2 +$ 5?		

A*: enqueue neighbors.



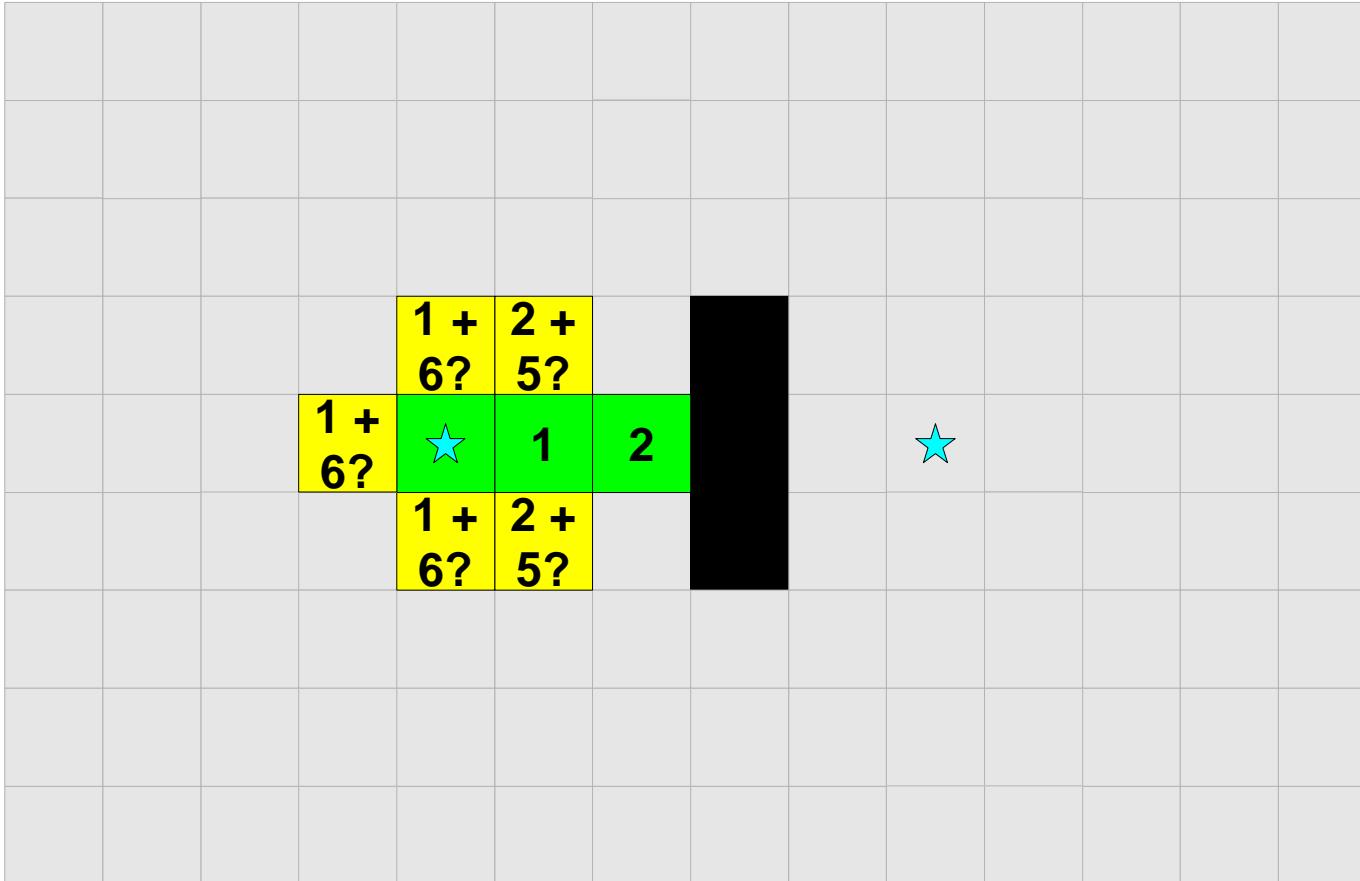
A* : 5, 7, 7, 7, 7, 7
Dijkstra : 1, 1, 1, 2, 2, 2



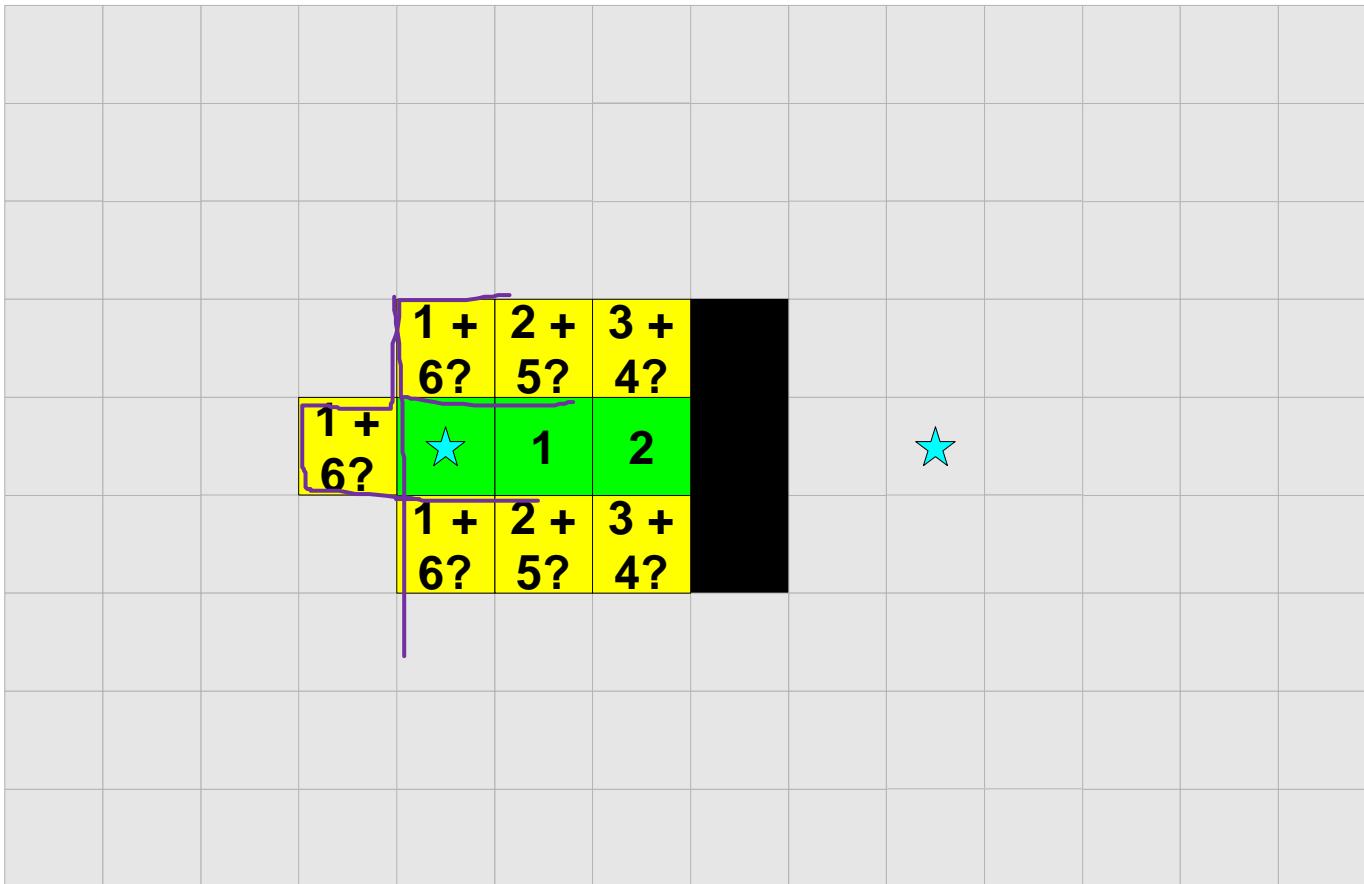
Now we're done with the green "1" node's turn.

What is the next node to turn green? (and what would it be if this were Dijkstra's?)

A*: dequeue next lowest priority value node. Notice we are making a straight line right for the end point, not wasting time with other directions.



A*: enqueue neighbors—uh-oh, wall blocks us from continuing forward.



A*: eventually figures out how to go around the wall, with some waste in each direction.

		3 + 8?	4 + 7?	5 + 6?	6 + 5?	7 + 4?		
	3 + 8?	2	3	4	5	6	7 + 2?	
	3 + 8?	2	1	2	3	7 + 2?		
3 + 8?	2	1	★	1	2	8	★	
	3 + 8?	2	1	2	3	7	8 + 1?	
	3 + 8?	2	3	4	5	6	7	8 + 3?
		3 + 8?	4 + 7?	5 + 6?	6 + 5?	7 + 4?	8 + 3?	

For Comparison: What Dijkstra's Algorithm Would Have Searched

8	7	6	5	4	5	6	7	8	9?			
7	6	5	4	3	4	5	6	7	8	9?		
6	5	4	3	2	3	4	5	6	7	8	9?	
5	4	3	2	1	2	3		7	8	9?		
4	3	2	1	★	1	2		8	★			
5	4	3	2	1	2	3		7	8	9?		
6	5	4	3	2	3	4	5	6	7	8	9?	
7	6	5	4	3	4	5	6	7	8	9?		
8	7	6	5	4	5	6	7	8	9?			

- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0 .
- Enqueue s into the priority queue with priority 0 .
- While not all nodes have been visited:
 - Dequeue the lowest-cost node u from the priority queue.
 - Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u .
 - If u is the destination node t , you have found the shortest path from s to t and are done.
 - For each node v connected to u by an edge of length L :
 - If v is gray:
 - Color v yellow.
 - Mark v 's distance as $d + L$.
 - Set v 's parent to be u .
 - Enqueue v into the priority queue with priority $d + L$.
 - If v is yellow and the candidate distance to v is greater than $d + L$:
 - Update v 's candidate distance to be $d + L$.
 - Update v 's parent to be u .
 - Update v 's priority in the priority queue to $d + L$.

Dijkstra's Algorithm

- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0 .
- Enqueue s into the priority queue with priority $h(s,t)$.
- While not all nodes have been visited:
- Dequeue the lowest-cost node u from the priority queue.
- Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u .
- If u is the destination node t , you have found the shortest path from s to t and are done.
- For each node v connected to u by an edge of length L :
 - If v is gray:
 - Color v yellow.
 - Mark v 's distance as $d + L$.
 - Set v 's parent to be u .
 - Enqueue v into the priority queue with priority $d + L + h(v,t)$.
 - If v is yellow and the candidate distance to v is greater than $d + L$:
 - Update v 's candidate distance to be $d + L$.
 - Update v 's parent to be u .
 - Update v 's priority in the priority queue to $d + L + h(v,t)$.

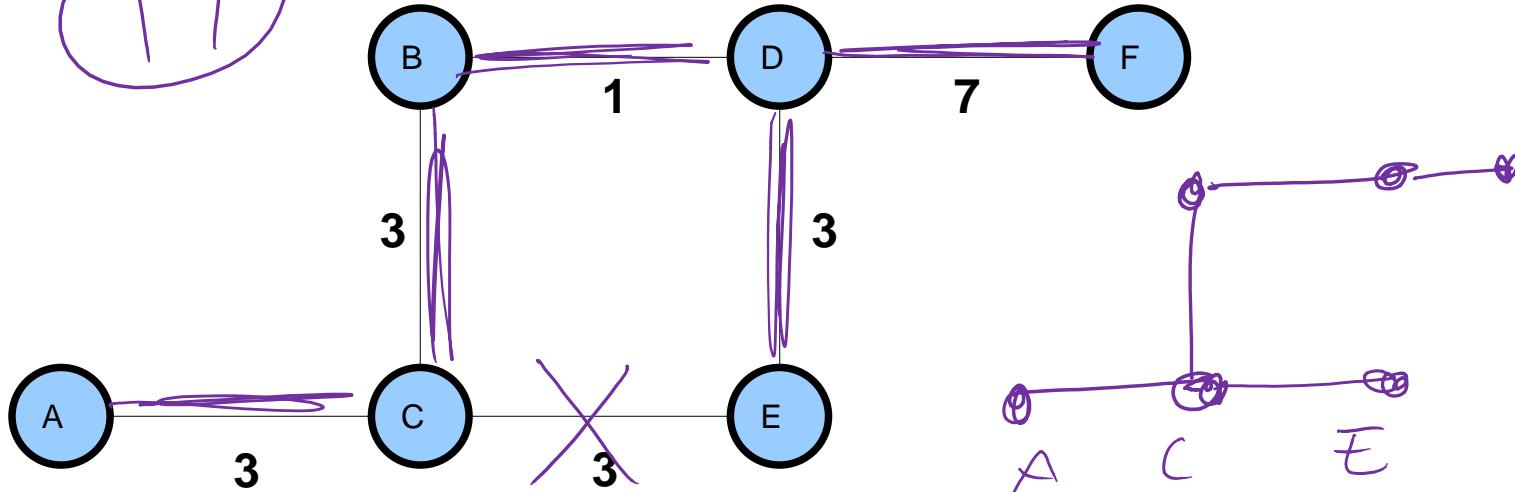
A* Search

Minimum Spanning Tree

A **spanning tree** in an undirected graph is a set of edges with no cycles that connects all nodes.

A **minimum spanning tree** (or **MST**) is a spanning tree with the least total cost.

17



How many distinct minimum spanning trees are in this graph?

- A. 0-1
- B. 2-3
- C. 4-5
- D. 6-7
- E. >7

Kruskal's algorithm

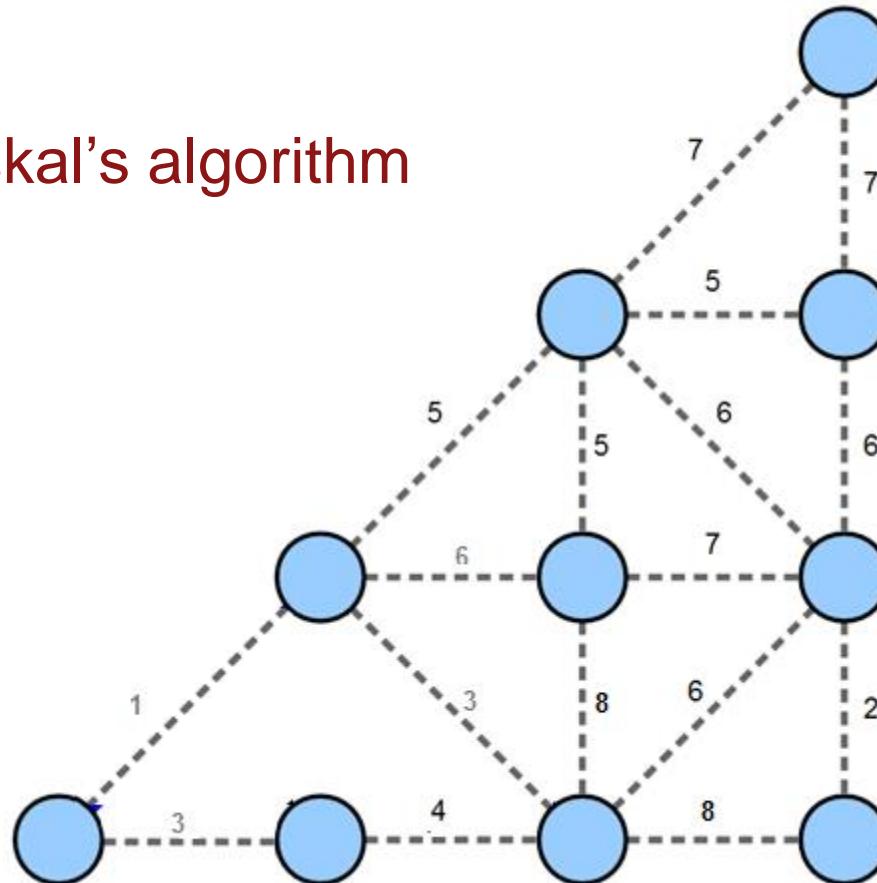
Remove all edges from graph

Place all edges in a PQ based on length/weight

While !PQ.isEmpty():

- Dequeue edge
- If the edge connects previous disconnected nodes or groups of nodes, keep the edge
- Otherwise discard the edge

Kruskal's algorithm



The Good Will Hunting Problem

Video Clip

<https://www.youtube.com/watch?v=N7b0cLn-wHU>

“Draw all the homeomorphically irreducible trees with $n=10$.”

“Draw all the homeomorphically irreducible trees with $n=10$.”

In this case “**trees**” simply means **graphs with no cycles** “with $n = 10$ ” (i.e., has **10 nodes**)
“homeomorphically irreducible”

- **No nodes of degree 2 allowed in your solutions**
 - › For this problem, nodes of degree 2 are useless in terms of tree structure—they just act as a blip on an edge—and are therefore banned
- Have to be actually different
 - › Ignore superficial changes in rotation or angles of drawing