
Programming Abstractions

Cynthia Lee

C S 106X

Graphs Topics

Graphs!

1. Basics

 What are they? How do we represent them?

2. Theorems

 What are some things we can prove about graphs?

3. Breadth-first search on a graph

 Spoiler: just a very, very small change to tree version

4. Dijkstra’s shortest paths algorithm

 Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm

 Spoiler: just a very, very small change to Dijkstra’s

6. Minimum Spanning Tree

 Kruskal’s algorithm

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

H

FE

G

B

D

A B
6?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

H
8?

F
11?

7

1

Dijkstra's Algorithm

● Split nodes apart into three groups:

● Green nodes, where we already have the shortest path;

● Gray nodes, which we have never seen; and

● Yellow nodes that saw just long enough to enqueue, but we still need to process.

● Dijkstra's algorithm works as follows:

● Mark all nodes gray except the start node, which is yellow and has cost 0.

● Until no yellow nodes remain:

– Choose the yellow node with the lowest total cost.

– Mark that node green.

– Mark all its gray neighbors yellow and with the appropriate cost.

– Update the costs of all adjacent yellow nodes by considering the path through

the current node.

HOMEWORK: An Important Note

 The version of Dijkstra's algorithm I have just described is not the

same as the version described in the course reader.

 This version is more complex than the book's version, but is faster.

 THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER

ASSIGNMENT!

How Dijkstra's Works

● Situation:

● Dijkstra's algorithm works by incrementally computing the shortest
path to intermediary nodes in the graph in case they prove to be
useful.

● Problem:

● No big-picture conception of how to get to the destination – the
algorithm explores outward in all directions, “in case.”

● Implication:

● Most of these explored nodes will end up being in completely the
wrong direction.

● Need:

● Could we give the algorithm a “hint” of which direction to go?

A* and Dijkstra’s
Close cousins

Heuristics

● In the context of graph searches, a heuristic function is a function that

guesses the distance from some known node to the destination node.

● The guess doesn't have to be correct, but it should try to be as accurate

as possible.

● Examples: For Google Maps, a heuristic for estimating distance might

be the straight-line “as the crow flies” distance.

Admissible Heuristics

● A heuristic function is called an admissible heuristic if it never

overestimates the distance from any node to the destination.

● In other words:

● predicted-distance ≤ actual-distance

Why Heuristics Matter

● We can modify Dijkstra's algorithm by introducing

heuristic functions.

● Given any node u, there are two associated costs:

●

● The actual distance from the start node s.

● The heuristic distance from u to the end node t.

● Key idea: Run Dijkstra's algorithm, but use the following

priority in the priority queue:

● priority(u) = distance(s, u) + heuristic(u, t)

● This modification of Dijkstra's algorithm is called the

A* search algorithm.

s tu

A* Search

 As long as the heuristic is admissible (and satisfies one other

technical condition), A* will always find the shortest path from

the source to the destination node.

 Can be dramatically faster than Dijkstra's algorithm.

 Focuses work in areas likely to be productive.

 Avoids solutions that appear worse until there is
evidence they may be appropriate.

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority h(s,t).
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L + h(v,t).

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L + h(v,t).

A* Search

A* on two points where the heuristic is slightly misleading
due to a wall blocking the way

A* starts with start node yellow, other nodes grey.

A*: dequeue start node, turns green.

1 +
6?

1 +
6?

1 +
4?

1 +
6?

A*: enqueue neighbors with candidate distance + heuristic
distance as the priority value.

1 +
6?

1 +
6?

1

1 +
6?

A*: dequeue min-priority-value node.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

???

2 +
5?

What goes in the ?

A. 2 + 5?

B. 1 + 6?

C. 2 + 4?

D. Other/none/more

???

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2 +
3?

2 +
5?

A*: enqueue neighbors.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2 +
3?

2 +
5?

Now we’re done with the
green “1” node’s turn.

What is the next node to
turn green? (and what
would it be if this were
Dijkstra’s?)

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2

2 +
5?

A*: dequeue next lowest priority value node. Notice we are making a
straight line right for the end point, not wasting time with other directions.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2

2 +
5?

3 +
4?

3 +
4?

A*: enqueue neighbors—uh-oh, wall blocks us from
continuing forward.

1 21

2

21

1

3

32
3 +
8?

3 +
8?

2
3 +
8?

3 +
8?

4

5 +
6?

2

3 +
8?

3

4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5

6 +
5?

6

7 +
4?

5

6 +
5?

7
8 +
1?

7

8 +
3?

8 +
3?

8

7 +
2?

6

7 +
4?

7 +
2?

A*: eventually figures out how to go around the wall, with
some waste in each direction.

1 21

2

21

1

3

32

2

42 3

2

2

3 4

5 6

5

7

7

8

6

For Comparison: What Dijkstra's Algorithm Would Have Searched

64

4 53

3

3

3

3

3

3

5

5

64

4

4

4

4

4

4

4

4

4 55

5

5

5

5

5

5

56

6

6

6

6

6 6

6

7

7

7

78

8 7

7

7

7

7

7 8

8

8

8

8

8

8

8 9?

9?

9?

9?

9?

9?

9?

9?

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority h(s,t).
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L + h(v,t).

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L + h(v,t).

A* Search

Minimum Spanning Tree

A spanning tree in an undirected graph is a set of edges

with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree

with the least total cost.

B D

ECA

F

How many distinct minimum

spanning trees are in this

graph?

A. 0-1

B. 2-3

C.4-5

D.6-7

E. >7

3

3

1

3

3

7

Edges:

(A,B)=1

(A,C)=3

(B,C)=6

(B,D)=3

(C,E)=3

(D,E)=3

(D,F)=7

Kruskal’s algorithm

Remove all edges from graph

Place all edges in a PQ based on length/weight

While !PQ.isEmpty():

 Dequeue edge

 If the edge connects previous disconnected

nodes or groups of nodes, keep the edge

 Otherwise discard the edge

Kruskal’s algorithm

The Good Will Hunting Problem

Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU

https://www.youtube.com/watch?v=N7b0cLn-wHU

“Draw all the homeomorphically irreducible trees with n=10.”

“Draw all the homeomorphically irreducible
trees with n=10.”

In this case “trees” simply means graphs with no cycles

“with n = 10” (i.e., has 10 nodes)

“homeomorphically irreducible”

 No nodes of degree 2 allowed in your solutions

› For this problem, nodes of degree 2 are useless in

terms of tree structure—they just act as a blip on an

edge—and are therefore banned

 Have to be actually different

› Ignore superficial changes in rotation or angles of

drawing

