Programming Abstractions
CS106X

Cynthia Lee

Stanford University

(WooTenbIpoidonedsouUeuudb :jrews)

woo'enbigoidonioed MMM ‘sioueld Uud|D @ : UolNgLY "asuadl| 8y} JO swal

3U} MO||0} pue 8w 1Ipald NoA se Buo| Se 11 asn 0] 981} aJe NOA “MO|3q Palels (S)asuadl|
ay1 Japun paseajal pue (uua|bo] :1esn) Souelq uuao Ag usyel sem ydeiboloyd siy

Stanford University

Example: Expression trees (final project)

Example: Stanford GObiject class

7))
O

o

= =
8 «82%
(- & o)

@©

8§ §8 % ¢
S ze2vs
m ml | |

https://commons.wikimedia.org/wiki/User:Toglenn
mailto:glennfrancis@pacificprodigital.com

Inheritance

What? Why? How?

Stanford University

Inheritance: what?

Is-a relationship: A hierarchical connection where one category can
be treated as a specialized version of another.

= every rectangle is a shape
= every lionis an animal
= every lawyer is an employee

Elephant

type hierarchy: A set of data types
connected by is-a relationships
that can share common code.

* Re-use! German | [Labrador| [Clydesdale| |Palomino
Shepherd | | Retriever

Stanford University

Inheritance: why?

Remember the #1 rule of computer scientists:

» Computer scientists are super lazy
> ...iIn a good way!

We want to reuse code and work as much as possible

You've already seen this going back to the very start of your CS
education:

» Loops and Functions (instead of copy&paste to repeat code)
» Arrays (instead of copy&paste to make 100 named variables)
» Data structures (same idea as arrays but more expressive)

Inheritance is another way of organizing smart reuse of code

Stanford University

Inheritance: how?

Inheritance: A way to form new classes based on existing classes,
taking on their attributes/behavior.

= away to group related classes
»= away to share code between two or more classes

One class can extend another, absorbing its data/behavior.

Stanford University

Inheritance vocab

= superclass (base class): —
Parent class that is being

extended. / Elephant
= subclass (derived class):

Child class that inherits from
the superclass.

» Subclass gets a copy of German Labrador [Clydesdalej |Palomino
every field and method from Shepherd \ Retriever
superclass.

» Subclass can add its own
behavior, and/or change
inherited behavior.

Stanford University

Inheritance Example

Stanford Library GObject family of classes

Stanford University

| £ €5 1068 Trailblazer o i

Behind the scenes...

= We've always told you not to worry about
the graphics parts of your assignments.

= “Just call this BoggleGUI function...”
= Now you can go ahead and take a look!

] €S 1068 Boggle (=] [

You found a new word! "tune"

Human 1 Computer 0

ttttt

Z ClIT O
— | Z|I|m
> M| Z
myc|<|—

Stanford University

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

= GArc -\ .
= GImage ?
= GLabel hj

= GLine —
» Goval P

= GPolygon V
| GArc | | GImage | | GLabel | | GLine ‘ ‘ GOval | ‘ GRect | | GPolygon | |GCom ound
+ GRect [ol lces [o e s

= G3DRect -

u G RO u n d Re C 't - | G3DRect | |GRoundRect|

Stanford University

GObiject hierarchy Q: Rectangle is-a Polygon, right?
Why doesn'’t it inherit from Polygon?

The Stanford C++ library contains a h
objects based on a common base Think about it as we go through

= GArc some details, and we’ll revisit the
. GImage [question later.

= GLabel hij e

= GLine —

» Goval @D

= GPolygon V
| GArc | | GImage | | GLabel | | GLine ‘ ‘ GOval | ‘ GRect | | GPolygon | |GCom ound
+ GRect N o iomelcen [l o [l o s

= G3DRect -

] G RO u n d Re C 't - | G3DRect | |GRoundRect|

Stanford University

Your turn: GObject design

How many of the following would you put in the base class (GObject),
as opposed to a derived class?

» contains(x, y) - returns true if (x,y) lands on the item

———setFont(F) - sets the font for writing —
» setColor(c)

——getkillcotor() orgect
» getWidth()

A. 0-1 (none or one of them)

B. 2

D. 4-5 of them \

G3DRect GRoundRect

GODbject members

GObject defines the state and behavior common to all shapes:
= contains(x, y)
= get/setColor() double x;

= getHeight(), getWidth() double y;

= get/setlLocation(), get/setX(), get/setY() double l%newidth;
= move(dx, dy) std::string color;

bool visible;
= setVisible(visible) ool visible

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize
get/setlLabel get/setEndPoint addVertex get/setFillColor
get/setFillColor

Stanford University

GODbject members

GObject defines the state and behavior common to all shapes:
= contains(x, y)
= get/setColor() double x;

= getHeight(), getWidth() double y;

= get/setlLocation(), get/setX(), get/setY() double l%newidth;
= move(dx, dy) std::string color;

bool visible;
» setVisible(visible) ool visible

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize
get/setlLabel get/setEndPoint addVertex get/setFillColor
get/setFillColor

Stanford University

GObiject hierarchy Q: Rectangle is-a Polygon, right?
Why doesn't it inherit from Polygon??

The Stanford C++ library contains a h
objects based on a common base Although true in geometry, they don't
= GArc share many fields and methods in

. GImage 1; this case.

= GLabel hj

« GLine —
= goval P

= GPolygon V
| GArc | | GImage | | GLabel | | GLine ‘ ‘ GOval | ‘ GRect | | GPolygon | |GCompound

= GRect |
= G3DRect -

] G RO u n d Re C 't - | G3DRect | |GRoundRect|

GObject

Stanford University

Inheritance Example

Your turn: let’s write an Employee family of classes

Stanford University

Example: Employees

Imagine a company with the following employee regulations:
= All employees work 40 hours / week

= Employees make $40,000 per year plus $500 for each year worked

» Except for lawyers who get twice the usual pay, and programmers who get the same $40k
base but $2000 for each year worked

= Employees have 2 weeks of paid vacation days per year
» Except for programmers who get an extra week (a total of 3)

Each type of employee has some unique behavior:

= Lawyers know how to sue

= Programmers know how to write code

= |T person knows how to fix PCs

= Network IT person knows how to fix PCs and how fix the network

Stanford University

Employee class

// Employee.h

class Employee {

public:
Employee(string name,

int years);

virtual int hours();
virtual string name();
virtual double salary();
virtual int vacationDays();
virtual int years();

private:
string m_name;
int m_years;

}s

// Employee.cpp

Employee: :Employee(string name, int years) {

m_name = name;
m_years = years;

int Employee: :hours() {
return 40;

string Employee::name() {
return m_name;

double Employee::salary()
return 4%@00.0 + (gee i m_years);

int Employee::vacationDays() {
return 10;

int Employee::years() {
return m_years;

Stanford University

Exercise: Employees

Exercise: Implement classes Lawyer and Programmer.
= A Lawyer remembers what law school he/she went to.

Lawyers make twice as much salary as normal employees.
Lawyers know how to sue people (unique behavior).
Lawyers put “, Esq.” at the end of their name.

Programmers make the same base salary as normal employees,
but they earn a bonus of $2k/year instead of $500/year.

Programmers know how to write code (unique behavior).

Stanford University

Inheritance syntax

class Name @ublic SuperclassName {

= Example:

class Lawyer : public Employee {

}s

By extending Employee, each Lawyer object now:

» receives a hours, name, salary, vacationDays, and years method
automatically

= can be treated as an Employee by client code (see this next class!)

Stanford University

Call superclass c'tor

SubclassName: : SubclassName(params)
: SuperclassName (params) {
statements;

To call a superclass constructor from subclass constructor, use
an initialization list, with a colon after the constructor
declaration.

= Example:

Lawyer: :Lawyer(string name, string lawSchool, int years)
: Employee(name, years) {
// calls Employee constructor first
m_lawSchool = lawSchool;

Stanford University

// Employee.h
class Employee {
public:

Your turn: inheritance Employee(string name,
int years);
. int hours();
string Lawyer::name() { string name();
?P? double salary();
} int vacationDays();

string vacationForm();

For adding “, Esq.” to the name, which of the int years();

following could work? private:

string m_name;
return m_name + “, Esq.”; int m_years;
return name() + “, Esq.”; }s

return Employee::name() + “, Esq.”;
None of the above
More than one of the above

monNn w >

Stanford University

Call superclass member

SuperclassName : :memberName (params)

To call a superclass overridden member from subclass member.
= Example:

double Lawyer::salary() { // paid twice as much
return Employee::salary() * 2;

}

= Note: Subclass cannot access private members of the superclass.

= Note: You only need to use this syntax when the superclass's member
has been overridden.

» If you just want to call one member from another, even if that member
came from the superclass, you don't need to write Superclass:: .

Stanford University

