
Programming Abstractions

Cynthia Lee

C S 106X

Inheritance Topics

Inheritance

 The basics

› Example: Stanford GObject class

 Polymorphism

› Example: Expression trees (final project)

T
h

is
 p

h
o
to

g
ra

p
h
 w

a
s
 t
a
k
e
n
 b

y
G

le
n
n
 F

ra
n
c
is

(U
s
e
r:

T
o
g
le

n
n

)
a
n
d
 r

e
le

a
s
e
d
 u

n
d
e
r

th
e

lic
e
n
s
e
(s

)
s
ta

te
d
 b

e
lo

w
.
Y

o
u
 a

re
 f

re
e
 t
o
 u

s
e
 i
t
a
s
 l
o
n
g
 a

s
 y

o
u
 c

re
d
it
 m

e
 a

n
d
 f
o
llo

w
 t
h
e

te
rm

s
 o

f
th

e
 l
ic

e
n
s
e
.
A

tt
ri
b
u
ti
o
n

:
©

 G
le

n
n
 F

ra
n
c
is

,
w

w
w

.P
a
c
if
ic

P
ro

D
ig

it
a
l.
c
o
m

(E
m

a
il:

g
le

n
n
fr

a
n
c
is

p
a
c
if
ic

p
ro

d
ig

it
a
l.
c
o
m

)

https://commons.wikimedia.org/wiki/User:Toglenn
mailto:glennfrancis@pacificprodigital.com

Inheritance

What? Why? How?

Inheritance: what?

is-a relationship: A hierarchical connection where one category can

be treated as a specialized version of another.

 every rectangle is a shape

 every lion is an animal

 every lawyer is an employee

type hierarchy: A set of data types

connected by is-a relationships

that can share common code.

• Re-use!

Inheritance: why?

 Remember the #1 rule of computer scientists:

› Computer scientists are super lazy
› …in a good way!

 We want to reuse code and work as much as possible

 You’ve already seen this going back to the very start of your CS
education:

› Loops and Functions (instead of copy&paste to repeat code)

› Arrays (instead of copy&paste to make 100 named variables)

› Data structures (same idea as arrays but more expressive)

 Inheritance is another way of organizing smart reuse of code

5

Inheritance: how?

inheritance: A way to form new classes based on existing classes,

taking on their attributes/behavior.

 a way to group related classes

 a way to share code between two or more classes

One class can extend another, absorbing its data/behavior.

Inheritance vocab

 superclass (base class):

Parent class that is being

extended.

 subclass (derived class):

Child class that inherits from

the superclass.

› Subclass gets a copy of

every field and method from

superclass.

› Subclass can add its own

behavior, and/or change

inherited behavior.

Inheritance Example
Stanford Library GObject family of classes

Behind the scenes…

 We’ve always told you not to worry about

the graphics parts of your assignments.

 “Just call this BoggleGUI function…”

 Now you can go ahead and take a look!

9

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

 GArc

 GImage

 GLabel

 GLine

 GOval

 GPolygon

 GRect

 G3DRect

 GRoundRect

hi

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

 GArc

 GImage

 GLabel

 GLine

 GOval

 GPolygon

 GRect

 G3DRect

 GRoundRect

hi

Q: Rectangle is-a Polygon, right?

Why doesn’t it inherit from Polygon?

Think about it as we go through

some details, and we’ll revisit the

question later.

Your turn: GObject design

How many of the following would you put in the base class (GObject),

as opposed to a derived class?

› contains(x, y) – returns true if (x,y) lands on the item

› setFont(f) – sets the font for writing

› setColor(c)

› getFillColor()

› getWidth()

A. 0-1 (none or one of them)

B. 2

C. 3

D. 4-5 of them

GObject members

GObject defines the state and behavior common to all shapes:
 contains(x, y)

 get/setColor()

 getHeight(), getWidth()

 get/setLocation(), get/setX(), get/setY()

 move(dx, dy)

 setVisible(visible)

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize

get/setLabel get/setEndPoint addVertex get/setFillColor

get/setFillColor

...

double x;
double y;
double lineWidth;
std::string color;
bool visible;

GObject members

GObject defines the state and behavior common to all shapes:
 contains(x, y)

 get/setColor()

 getHeight(), getWidth()

 get/setLocation(), get/setX(), get/setY()

 move(dx, dy)

 setVisible(visible)

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize

get/setLabel get/setEndPoint addVertex get/setFillColor

get/setFillColor

...

double x;
double y;
double lineWidth;
std::string color;
bool visible;

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

 GArc

 GImage

 GLabel

 GLine

 GOval

 GPolygon

 GRect

 G3DRect

 GRoundRect

hi

Q: Rectangle is-a Polygon, right?

Why doesn’t it inherit from Polygon??

Although true in geometry, they don’t

share many fields and methods in

this case.

Inheritance Example
Your turn: let’s write an Employee family of classes

Example: Employees

Imagine a company with the following employee regulations:

 All employees work 40 hours / week

 Employees make $40,000 per year plus $500 for each year worked

› Except for lawyers who get twice the usual pay, and programmers who get the same $40k

base but $2000 for each year worked

 Employees have 2 weeks of paid vacation days per year

› Except for programmers who get an extra week (a total of 3)

Each type of employee has some unique behavior:

 Lawyers know how to sue

 Programmers know how to write code

 IT person knows how to fix PCs

 Network IT person knows how to fix PCs and how fix the network

18

Employee class

// Employee.h
class Employee {
public:

Employee(string name,
int years);

virtual int hours();
virtual string name();
virtual double salary();
virtual int vacationDays();
virtual int years();

private:
string m_name;
int m_years;

};

// Employee.cpp
Employee::Employee(string name, int years) {

m_name = name;
m_years = years;

}

int Employee::hours() {
return 40;

}

string Employee::name() {
return m_name;

}

double Employee::salary() {
return 40000.0 + (500 * m_years);

}

int Employee::vacationDays() {
return 10;

}

int Employee::years() {
return m_years;

}

Exercise: Employees

Exercise: Implement classes Lawyer and Programmer.

 A Lawyer remembers what law school he/she went to.

 Lawyers make twice as much salary as normal employees.

 Lawyers know how to sue people (unique behavior).

 Lawyers put “, Esq.” at the end of their name.

 Programmers make the same base salary as normal employees,

but they earn a bonus of $2k/year instead of $500/year.

 Programmers know how to write code (unique behavior).

Inheritance syntax

class Name : public SuperclassName {

 Example:

class Lawyer : public Employee {
...

};

By extending Employee, each Lawyer object now:

 receives a hours, name, salary, vacationDays, and years method

automatically

 can be treated as an Employee by client code (see this next class!)

Call superclass c'tor

SubclassName::SubclassName(params)

: SuperclassName(params) {

statements;

}

To call a superclass constructor from subclass constructor, use
an initialization list, with a colon after the constructor
declaration.

 Example:

Lawyer::Lawyer(string name, string lawSchool, int years)
: Employee(name, years) {

// calls Employee constructor first
m_lawSchool = lawSchool;

}

Your turn: inheritance

string Lawyer::name() {
???

}

For adding “, Esq.” to the name, which of the
following could work?

A. return m_name + “, Esq.”;
B. return name() + “, Esq.”;
C. return Employee::name() + “, Esq.”;
D. None of the above
E. More than one of the above

// Employee.h
class Employee {
public:

Employee(string name,
int years);

int hours();
string name();
double salary();
int vacationDays();
string vacationForm();
int years();

private:
string m_name;
int m_years;

};

Call superclass member

SuperclassName::memberName(params)

To call a superclass overridden member from subclass member.

 Example:

double Lawyer::salary() { // paid twice as much
return Employee::salary() * 2;

}

 Note: Subclass cannot access private members of the superclass.

 Note: You only need to use this syntax when the superclass's member

has been overridden.

› If you just want to call one member from another, even if that member
came from the superclass, you don't need to write Superclass:: .

