
Programming Abstractions

Cynthia Lee

C S 106X

Inheritance Topics

Inheritance

 The basics

› Example: Stanford GObject class

 Polymorphism

› Example: Expression trees (final project)

Polymorphism
Start with how

Polymorphism

polymorphism: Ability for the same code to be used with different types of objects

and behave differently with each.

 Templates provide a kind of compile-time polymorphism.

› Grid<int> or Grid<string> will output different things for myGrid[0][0], but

we can predict at compile time which it will do

 Inheritance provides run-time polymorphism.

› someEmployee.salary() will behave differently at runtime depending on what

type of employee—may not be able to predict at compile time which it is

Polymorphism

We will keep working with the Employee class:

5

 Employees have a name, years worked, salary, vacation, …

 Lawyers know how to sue and get paid 2x as much

 Programmers know how to write code and get bigger raises each year

 (Code is now on lectures page of website.)

Polymorphism

A pointer of type T can point to any subclass of T.

Employee *neha = new Programmer("Neha", 2);
Employee *diane = new Lawyer("Diane", "Stanford", 5);
Programmer *cynthia = new Programmer("Cynthia", 10);

 Why would you do this?

› Handy if you want to have a function that works on any Employee, but takes

advantage of custom behavior by specific employee type:

void doMonthlyPaycheck(Employee *employee) {

cout << "You are now $" << employee->salary()/12 << " wealthier!" << endl;

}

Polymorphism

A pointer of type T can point to any subclass of T.

Employee *neha = new Programmer("Neha", 2);
Employee *diane = new Lawyer("Diane", "Stanford", 5);
Programmer *cynthia = new Programmer("Cynthia", 10);

 When a member function is called on diane, it behaves as a Lawyer.

› diane->salary();

› (This is because all the employee functions are declared virtual.)

 You can not call any Lawyer-only members on diane (e.g. sue).

› diane->sue(); // will NOT compile!

 You can call any Programmer-only members on cynthia (e.g. code).

› cynthia->code("Java"); // ok!

Polymorphism examples

You can use the object's extra functionality by casting.

Employee *diane = new Lawyer("Diane", "Stanford", 5);
diane->vacationDays(); // ok
diane->sue("Cynthia"); // compiler error
((Lawyer*) diane)->sue("Cynthia"); // ok

Pro Tip: you should not cast a pointer into something that it is not!

• It will compile, but the code will crash (or behave unpredictably)

when you try to run it.

Employee *carlos = new Programmer("Carlos", 3);
carlos->code(); // compiler error
((Programmer*) carlos)->code("C++"); // ok
((Lawyer*) carlos)->sue("Cynthia"); // No!!! Compiles but crash!!

Rules for “virtual”: runtime calls

DerivedType * obj = new DerivedType();

If we call a method like this: obj->method(), only one thing could happen:

1. DerivedType’s implementation of method is called

BaseType * obj = new DerivedType();

If we call a method like this: obj->method(), two different things could

happen:

1. If method is not virtual, then BaseType’s implementation of method is

called

2. If method is virtual, then DerivedType’s implementation of method is

called

Rules for “virtual”: pure virtual

If a method of a class looks like this:

 virtual returntype method() = 0;

 then this method is a called “pure virtual” function

 and the class is called an “abstract class”

 Abstract classes are like Java interfaces

 You cannot do “= new Foo();” if Foo is abstract (just like Java

interfaces)

 ALSO, you cannot do “= new DerivedFoo();” if DerivedFoo extends

Foo and DerivedFoo does not implement all the pure virtual

methods of Foo

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Mammal;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Siamese;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Mammal;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
m->scratchCouch();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Cat * c = new Siamese;
c->makeSound();

(A)“rawr”
(B)“meow”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

Stanford 1-2-3 Walkthrough
The Expression class

Walkthrough of Stanford 1-2-3

 Excel-like spreadsheet

 Among other things, it needs to parse expressions

› = (3 + 4) * A7

 We saw something similar to this earlier in the quarter:

*

+ /

3 4 28

Evaluation of CompoundExp

This is in the implementation of CompoundExp—let’s take a look at the .h file

to see what op, lhs, and rhs are

C++ and the “virtual” keyword

Expression (base class)

Note: you cannot actually create an Expression object

These methods are never implemented (note the “= 0”)

 “pure virtual”

Expression exists solely to provide a base class to others

 “abstract”

Another Derived class: DoubleExp

Another Derived class: IdentifierExp

This diagram shows a
CompoundExp object as the root of
a tree, and the children are the LHS
and RHS (private member
variables of type Expressio*). LHS
points to an object of type
DoubleExp, with value 3.7. RHS
points to an object of type
IdentifierExp with name “foo”. Note
that it is ok for the RHS and LHS
pointers to point to DoubleExp and
IdentifierExp objects, because
these are derived classes of the
base class Expression.

Stanford 1-2-3 eval

Because of the “is a”
relationship: lhs/rhs
of compoundExp can be
any of:

 CompoundExp

 DoubleExp

 IdentifierExp

This diagram shows a
CompoundExp object as the root of
a tree, and the children are the LHS
and RHS (private member
variables of type Expressio*). LHS
points to an object of type
DoubleExp, with value 3.7. RHS
points to an object of type
IdentifierExp with name “foo”. Note
that it is ok for the RHS and LHS
pointers to point to DoubleExp and
IdentifierExp objects, because
these are derived classes of the
base class Expression.

Stanford 1-2-3 eval

CompoundExp doesn’t want

to care exactly what
type its lhs and rhs are

Just calls eval() on

whatever they are and

gets the right value!

