Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Inheritance Topics

Inheritance YOU INHERIT
= The basics $100
» Example: Stanford GObject class
= Polymorphism
» Example: Expression trees (final project)

Stanford University

Polymorphism

Start with how

Stanford University

Polymorphism

polymorphism: Ability for the same code to be used with different types of objects
and behave differently with each.

» Templates provide a kind of compile-time polymorphism.

> Grid<int> or Grid<string> will output different things for myGrid[@][@], but
we can predict at compile time which it will do

» Inheritance provides run-time polymorphism.

> someEmployee.salary() will behave differently at runtime depending on what
type of employee—may not be able to predict at compile time which it is

Stanford University

Polymorphism

We will keep working with the Employee class:

= Employees have a name, years worked, salary, vacation, ...
= Lawyers know how to sue and get paid 2x as much
» Programmers know how to write code and get bigger raises each year

= (Code is now on lectures page of website.)

Stanford University

Polymorphism

A pointer of type T can point to any subclass of T.

Programmer () Neha", 2);
Lawyer("Dighe", "Stanford", 5);

ammer ("Cynthia", 10);

Employee| *neha = new
*diane
r *cynthia

1]
S
()
=

Il
=)
M
=

= Why would you do this?

» Handy if you want to have a function that works on any Employee, but takes
advantage of custom behavior by specific employee type:

void doMonthlyPaycheck(Employee *employee)
=>salary()/12

cout << "You are now $" << gmployee < " wealthier!" << endl;

Stanford University

Polymorphism

A pointer of type T can point to any subclass of T.

new Programmer('“Neha", 2);
new Lawyer("Diane", "Stanford", 5);
new Programmer("Cynthia", 10);

Employee *neha

Employee _*diane
Programmer *cynthia

= When a member function is called on diane, it behaves as a Lawyer.
» diane-@alary()s N\
» (This is because all the employee functions are declared virtual.)
= You can not call any Lawyer-only members on diane (e.g. sue).
» diane->sue(); // will NOT compile!
= You can call any Programmer-only members on cynthia (e.g. code).
> cynthia->code("Java"); // ok!

Stanford University

S WSem (L | D ,)

. : RO V24
Polymorphism examples W\ Y
You can use the object's extra functionality by casting. +

Jtalole

Employee *diane = new Lawyer("Diane", "Stanford", 5);

diane->vacationDays(); // ok
diane->sue("Cynthia"); // compiler error
((Lawyer*) diane)->sue("Cynthia"); // ok

Pro Tip: you should not cast a pointer into something that it is not!
« It will compile, but the code will crash (or behave unpredictably)
when you try to run it.

Employee __*carlos = new Programmer("Carlos", 3);
_EEFI6§7§ESEE(); Y // compiler error
Pr r*) carlos)->code("C++"); // ok
((Lawyer*) carlos)->sue("Cynthia"); // No!!!l Compiles but crash!!

Stanford University

Rules for “virtual’: runtime calls

DerivedType * obj = new DerivedType();
If we call a method like this: obj->method(), only one thing could happen:
1. DerivedType’s implementation of method is called

BaseType * obj =/new DerivedType();
If we call a method like this: obj->method(), two different things could
e

happen:

1. If method is not virtual, then BaseType’s implementation of method is
called

2. If method is virtual, then DerivedType’s implementation of method is
called

Stanford University

Rules for “virtual™: pure virtual

If a method of a class looks like this:
virtual returntype method() = 0;
= then this method is a called “pure virtual” function
» and the class is called an “abstract class”
= Abstract classe tkecJavermterfaces

* You cannot'do “= new Foo();” jf Foo is abstract (just like Java
Interfaces)

= ALSO, you cannot do “= new DerivedFoo();” if DerivedFoo extends
Foo and DerivedFoo does not implement all the pure virtual
methods of Foo

Stanford University

class Mammal { /CKO S+77C(:+- ~ r*’“03‘
ve v
CrTusTvaid makeSoutd() = @; O £

string toString() { neturn “Mammal”; }

}s
class Cat : public Mammal {
public:

virtual void makeSouhd() { cout << “rawr” << endl; }

string toString() { Jreturn “Cat”; }

class Siamese : publig
public:

virtual void makeSound() { cout << “meow” << endl; }

string toString() { |return “Siamese”; }

virtual void scratchkouch() { cout << “scraaaatch” << endl; }

Cat {

}s
What is printed? (A)“Mammal”
Siamese * s =Chew Manmmql (B)“Cat”
cout << s->toString(); / «“Siamese”
ives an error (identif; ¢r or crash)

(E) Other/none/more

Stanford University

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }
}s

class Cat : public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }

class Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”;
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

}s

What is printed? (A)“Mammal”
Siamese * s = new Siamese; (B “Cat”

cout << s->toString(); 3Siamese”

) Gives an error (identify compiler or crash)
(E) Other/none/more

Stanford University

C
class Mammal { ﬂ$%9£4V7%\ A

public:
virtual void makeSox {
string toString() o n—“Mammal”; }

}s
class Cat : public Mammal
public:

virtual void makeSound() { cout << “rawr” << endl; }

string toString() { retyrn “Cat”; }
t {

class Siamese : public C
public:
virtual void makeSound[) { cout << “meow” << endl; }

string toString() { regturn “Siamese”; }
virtual void scratchCpuch() { cout << “scraaaatch” << endl; }

¥

What is printed? (A)“Mammal”
Mammal * m = new (B)“Cat”
cout << m->toString

C)“Siamese”
(D) Gives an error (identif@r or crash)
(E) Other/none/more

Stanford University

class Mammal {
public:

virtual void makeSound() = @4 @,Q
string toString() { return “Mammal”; }

class Cat : public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }

ciass Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”;
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

}s

(A)“Mammal”
What is printed?

(B
ammal * = few Siamese;

€C€CCq »
‘T'&/m:toStr‘lng(), (C)“Siamese

(D) Gives an error (identify compiler or crash)
(E) Other/none/more

Stanford University

ass Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }

ciass Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”;
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

(A)“Mammal”

(B)“Cat,,

(C)“Siamese”

(D) Gives an error (identify compiler or crash)

(E) Other/none/more o
Stanford University

class Mammal {
public:

virtual void makeSound() = ©;
string toString() { return “Mammal”; }
5
class Cat : public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }
}s

class Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

}s

What is printed? (A)“rawr”

Cat * ¢ = new Siamese; (B)fanOMfJ

c->makeSound(); (C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

Stanford University

/f_\
Stanford 1-2-3 Walkthrough
The Expres

Stanford University

Walkthrough of Stanford 1-2-3

= Excel-like spreadsheet
= Among other things, it needs to parse expressions
) = (3 +.4) *fh7)
= We saw something similar to this earlier in the quarter:

Stanford University

Evaluation of CompoundExp

4 CompoundExpss-~CompoundExp() {
delete
delete

¥
4 double CompoundExp: LEywqluationContext & context) const {

double right reval(context) ;
double left evajy(context);
if (op == "+") Tetu S ~ght ;
if (op == "-") return left - right;
if (op == "*") return left * right;
if (op == "/") return left / right; /) divide by 0.0 gives *INF
error("Illegal operator in expression.");
return 0.0;

by

This is in the implementation of CompoundExp—Ilet’'s take a look at the .h file
to see what op, lhs, and rhs are

Stanford University

4 class CompoundExp : public Expression {
public:
Df** ___*,,lf
CompoundExp(const std::string& op, const Expression *lhs, const Expression *rhs);
/* Prototypes for the virtual methods overridden by this class */
virtual ~CompoundExp() ;
irtual d eval (BvaluationContext& context) const;

virtual std::string toString(J) const;
virtual ExpressionType getType() const;

/* Prototypes of methods specific to this class */
std::string getOperator() const;
const Expression *getLHS() const;
const Expression *getRHS() const;

private:
std::string op; /* The operator string (+, -, *, /) */
const Expressidﬁ_:iié)_iEEs; /* The left and right subexpression */

Stanford University

Expression (base class)

4 class Expression {
public:

Expression();
virtual ~Expression();

virtual double eval(EvaluationContext§ context) const
virtual std::string toString() const/= 0;
virtual ExpressionType getType() corst = 0;

Note: you cannot actually create an Expression object
These methods are never implemented (note the “= @)

= “pure virtual”

Expression exists solely to provide a base class to others
= “abstract”

Stanford University

Another Derived class: eExp

—_

4 class DoubleExp : public Expression {

public:
DoubleExp(double walue);

/* Prototypes for the virtual methods overridden by this class */
double eval(EvaluationContext& context) const;
std::string toString() const;
ExpressionType getType() const;

/* Prototypes of methods specific to this class */
double getDoubleValue() const;

private:
double wvalue; /* The walue of the constant */

¥

Stanford University

Another Derived class: IdentifierExp

—

€lass IdentifierExp : public Expression

ublic:

IdentifierExp(const std::string& name);

/* Prototypes for the virtual methods overridden by this class */
double eval(EvaluationContext& context) const;
std::string toString() const;
ExpressionType getType() const;

/* Prototypes of methods specific to this class */
std::string getIdentifierName () const;

private:
std: :string name; /* The name of the identifier =*/

}i:

Stanford University

Stanford 1-2-3 eval

Because of the “is a”
relationship: 1hs/rhs
of compoundExp can be
any of:

= CompoundExp
= DoubleExp
= IdentifierExp

Stanford University

Stanford 1-2-3 eval

CompoundExp doesn’t want
to care exactly what
type its 1hs and rhs are

Just calls eval() on
whatever they are and
gets the right value!

Stanford University

