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Inheritance Topics

Inheritance YOU INHERIT
= The basics $100
» Example: Stanford GObject class
= Polymorphism
» Example: Expression trees (final project)
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Polymorphism

Start with how
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Polymorphism

polymorphism: Ability for the same code to be used with different types of objects
and behave differently with each.

» Templates provide a kind of compile-time polymorphism.

> Grid<int> or Grid<string> will output different things for myGrid[@][@], but
we can predict at compile time which it will do

» Inheritance provides run-time polymorphism.

> someEmployee.salary() will behave differently at runtime depending on what
type of employee—may not be able to predict at compile time which it is
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Polymorphism

We will keep working with the Employee class:

= Employees have a name, years worked, salary, vacation, ...
= Lawyers know how to sue and get paid 2x as much
» Programmers know how to write code and get bigger raises each year

= (Code is now on lectures page of website.)
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Polymorphism

A pointer of type T can point to any subclass of T.

Programmer () Neha", 2);
Lawyer("Dighe", "Stanford", 5);

ammer ("Cynthia", 10);

Employee| *neha = new
*diane
r *cynthia
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=  Why would you do this?

» Handy if you want to have a function that works on any Employee, but takes
advantage of custom behavior by specific employee type:

void doMonthlyPaycheck(Employee *employee)
=>salary()/12

cout << "You are now $" << gmployee < " wealthier!" << endl;

Stanford University



Polymorphism

A pointer of type T can point to any subclass of T.

new Programmer('“Neha", 2);
new Lawyer("Diane", "Stanford", 5);
new Programmer("Cynthia", 10);

Employee  *neha

Employee _*diane
Programmer *cynthia

= When a member function is called on diane, it behaves as a Lawyer.
» diane-@alary()s N\
» (This is because all the employee functions are declared virtual.)
= You can not call any Lawyer-only members on diane (e.g. sue).
» diane->sue(); // will NOT compile!
= You can call any Programmer-only members on cynthia (e.g. code).
> cynthia->code("Java"); // ok!
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Polymorphism examples W\ Y
You can use the object's extra functionality by casting. +

Jtalole

Employee *diane = new Lawyer("Diane", "Stanford", 5);

diane->vacationDays(); // ok
diane->sue("Cynthia"); // compiler error
((Lawyer*) diane)->sue("Cynthia"); // ok

Pro Tip: you should not cast a pointer into something that it is not!
« It will compile, but the code will crash (or behave unpredictably)
when you try to run it.

Employee __*carlos = new Programmer("Carlos", 3);
_EEFI6§7§ESEE(); Y // compiler error
Pr r*) carlos)->code("C++"); // ok
((Lawyer*) carlos)->sue("Cynthia"); // No!!!l Compiles but crash!!
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Rules for “virtual’: runtime calls

DerivedType * obj = new DerivedType();
If we call a method like this: obj->method(), only one thing could happen:
1. DerivedType’s implementation of method is called

BaseType * obj =/new DerivedType();
If we call a method like this: obj->method(), two different things could
e

happen:

1. If method is not virtual, then BaseType’s implementation of method is
called

2. If method is virtual, then DerivedType’s implementation of method is
called
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Rules for “virtual™: pure virtual

If a method of a class looks like this:
virtual returntype method() = 0;
= then this method is a called “pure virtual” function
» and the class is called an “abstract class”
= Abstract classe tkecJavermterfaces

* You cannot'do “= new Foo();” jf Foo is abstract (just like Java
Interfaces)

= ALSO, you cannot do “= new DerivedFoo();” if DerivedFoo extends
Foo and DerivedFoo does not implement all the pure virtual
methods of Foo
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class Mammal { /CKO S+77C(:+- ~ r*’“03‘
ve v
CrTusTvaid makeSoutd() = @; O £

string toString() { neturn “Mammal”; }

}s
class Cat : public Mammal {
public:

virtual void makeSouhd() { cout << “rawr” << endl; }

string toString() { Jreturn “Cat”; }

class Siamese : publig
public:

virtual void makeSound() { cout << “meow” << endl; }

string toString() { |return “Siamese”; }

virtual void scratchkouch() { cout << “scraaaatch” << endl; }

Cat {

}s
What is printed? (A)“Mammal”
Siamese * s =Chew Manmmql (B)“Cat”
cout << s->toString(); / «“Siamese”
ives an error (identif; ¢r or crash)

(E) Other/none/more
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class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }
}s

class Cat : public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }

class Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”;
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

}s

What is printed? (A)“Mammal”
Siamese * s = new Siamese; (B “Cat”

cout << s->toString(); 3Siamese”

) Gives an error (identify compiler or crash)
(E) Other/none/more
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C
class Mammal { ﬂ$%9£4V7%\ A

public:
virtual void makeSox {
string toString() o n—“Mammal”; }

}s
class Cat : public Mammal
public:

virtual void makeSound() { cout << “rawr” << endl; }

string toString() { retyrn “Cat”; }
t {

class Siamese : public C
public:
virtual void makeSound[) { cout << “meow” << endl; }

string toString() { regturn “Siamese”; }
virtual void scratchCpuch() { cout << “scraaaatch” << endl; }

¥

What is printed? (A)“Mammal”
Mammal * m = new (B)“Cat”
cout << m->toString

C)“Siamese”
(D) Gives an error (identif@r or crash)
(E) Other/none/more
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class Mammal {
public:

virtual void makeSound() = @4 @,Q
string toString() { return “Mammal”; }

class Cat : public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }

ciass Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”;
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

}s

(A)“Mammal”
What is printed?

(B
ammal * = few Siamese;

€C€CCq »
‘T'&/m:toStr‘lng(), (C)“Siamese

(D) Gives an error (identify compiler or crash)
(E) Other/none/more
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ass Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }

ciass Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”;
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

(A)“Mammal”

(B)“Cat,,

(C)“Siamese”

(D) Gives an error (identify compiler or crash)

(E) Other/none/more o
Stanford University



class Mammal {
public:

virtual void makeSound() = ©;
string toString() { return “Mammal”; }
5
class Cat : public Mammal {
public:
virtual void makeSound() { cout << “rawr” << endl; }

string toString() { return “Cat”; }
}s

class Siamese : public Cat {
public:
virtual void makeSound() { cout << “meow” << endl; }

string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

}s

What is printed? (A)“rawr”

Cat * ¢ = new Siamese; (B)fanOMfJ

c->makeSound(); (C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more
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Stanford 1-2-3 Walkthrough
The Expres
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Walkthrough of Stanford 1-2-3

= Excel-like spreadsheet
= Among other things, it needs to parse expressions
) = (3 +.4) *fh7)
=  We saw something similar to this earlier in the quarter:
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Evaluation of CompoundExp

4 CompoundExpss-~CompoundExp() {
delete
delete

¥
4 double CompoundExp: LEywqluationContext & context) const {

double right reval(context) ;
double left evajy(context);
if (op == "+") Tetu S ~ght ;
if (op == "-") return left - right;
if (op == "*") return left * right;
if (op == "/") return left / right; /) divide by 0.0 gives *INF
error("Illegal operator in expression.");
return 0.0;

by

This is in the implementation of CompoundExp—Ilet’'s take a look at the .h file
to see what op, lhs, and rhs are

Stanford University



4 class CompoundExp : public Expression {
public:
Df** ___*,,lf
CompoundExp(const std::string& op, const Expression *lhs, const Expression *rhs);
/* Prototypes for the virtual methods overridden by this class */
virtual ~CompoundExp() ;
irtual d eval (BvaluationContext& context) const;

virtual std::string toString(J) const;
virtual ExpressionType getType() const;

/* Prototypes of methods specific to this class */
std::string getOperator() const;
const Expression *getLHS() const;
const Expression *getRHS() const;

private:
std::string op; /* The operator string (+, -, *, /) */
const Expressidﬁ_:iié)_iEEs; /* The left and right subexpression */
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Expression (base class)

4 class Expression {
public:

Expression();
virtual ~Expression();

virtual double eval(EvaluationContext§ context) const
virtual std::string toString() const/= 0;
virtual ExpressionType getType() corst = 0;

Note: you cannot actually create an Expression object
These methods are never implemented (note the “= @)

=  “pure virtual”

Expression exists solely to provide a base class to others
= “abstract”

Stanford University



Another Derived class: eExp

—_

4 class DoubleExp : public Expression {

public:
DoubleExp(double walue);

/* Prototypes for the virtual methods overridden by this class */
double eval(EvaluationContext& context) const;
std::string toString() const;
ExpressionType getType() const;

/* Prototypes of methods specific to this class */
double getDoubleValue() const;

private:
double wvalue; /* The walue of the constant */

¥
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Another Derived class: IdentifierExp

—

€lass IdentifierExp : public Expression

ublic:

IdentifierExp(const std::string& name);

/* Prototypes for the virtual methods overridden by this class */
double eval(EvaluationContext& context) const;
std::string toString() const;
ExpressionType getType() const;

/* Prototypes of methods specific to this class */
std::string getIdentifierName () const;

private:
std: :string name; /* The name of the identifier =*/

}i:
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Stanford 1-2-3 eval

Because of the “is a”
relationship: 1hs/rhs
of compoundExp can be
any of:

= CompoundExp
= DoubleExp
= IdentifierExp
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Stanford 1-2-3 eval

CompoundExp doesn’t want
to care exactly what
type its 1hs and rhs are

Just calls eval() on
whatever they are and
gets the right value!
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