Programming Abstractions
CS106X

Cynthia Lee

Stanford University

Today’s Topics

Sorting!

1. The warm-ups
= Selection sort
= Insertion sort

2. Let’s use a data structure!
= Heapsort

3. Divide & Conquer

= Merge Sort (aka Professor Sorting the Midterms Using TAs
and SLs Sort)

= Quicksort

Stanford University

Selection Sort

A classic “My First Sorting Algorithm” sorting algorithm

Stanford University

Selection Sort

Compare the best-case and worst-
case costs of this algorithm (tight
Big-O characterization of each):

. Best case = WOW

B. Best case < Worst case
Why? Explain very specifically.

void sort(Vector<int> &vec) {
int n = vec.size();

for (int 1h = 0; 1h < n; lh++) {
int rh = lh;

for(ZEEE:E:E:EEiy 1; i < n; i++) {

if (vec[i] < vec[rh]) rh = i;

}
int tmp = vec[lh];
vec[lh] = vec[rh];
vec[rh] = tmp;

}

Stanford University

Bubble Sort

It's not very good, famously so...
https://www.youtube.com/watch?v=k4RRi ntQc8

(arguably better than Selection Sort though!)

Stanford University

https://www.youtube.com/watch?v=k4RRi_ntQc8

Insertion Sort

Another classic “Beginner” sorting algorithm

Stanford University

Insertion Sort

Compare the best-case and worst-
case costs of this algorithm (tight
Big-O characterization of each):

A. Best case = Worst case

@ Best case < Worst case’

Why? Explain very specifically.

void sort(Vector<int> & vec) {
int n = vec.size();

for (int i = 1; i < n; i++) {
int j = i;

while (7 > @ && vec[j-1] > vec[j]) {

int tmp = vec[i];
vec[i] = vec[j];
vec[j] = tmp;
J--;
}
}
}

Heap Sort

Stanford University

Heapsort

Pretty simple!!

1. Take the unsorted array and insert each element into a heap priority
gueue

2. While the queue is not empty, dequeue an element from the heap
priority queue

The elements come out of the priority queue in sorted order.

Fun fact: you don’t need extra array storage, you can do this in place in
the original array.

Stanford University

Professor’s Sorting Algorithm

Sorting in the “real world”

Stanford University

Preliminary Step:
We need a “combine two sorted piles” algorithm

Start: you have two piles, each of which is sorted

= Take the overall smallest element (smallest in
either pile) and add that one element to the
combined-sorted pile

= Repeat until the two starting piles are empty and
the combined-sorted pile is complete

Stanford University

Preliminary Step:
We need a “combine two sorted piles” algorithm

Start: you have two piles, each of which is sorted

: How
Take the overall smallest element (smallest in

either pile) and add that one element to the
combined-sorted pile

Repeat until the two starting piles are empty and examine
the combined-sorted pile is complete to find the

many
elements
do we

overall
smallest
element?

Stanford University

How many steps does it take to merge two sorted sub-
piles, A and B?
In other words, how long does it take to do the “combine two sorted
piles” algorithm on piles A and B? (best/tight answer)

A. O(log(|A|+|B])) steps
(B. O(|A[¥iBl)-steps—.
O(|A+B|)? steps
. O(JAJ? + |B|?)steps
Other/none/more than one

mo o

Stanford University

Professor’s sorting algorithm:

Stanford CS classes can have more than 500 students! Sorting the
midterms alphabetically to prepare for handing them back is a non-
trivial task. Luckily, | don’t have to do it myself...

1. Find two grad students, give each half of the unsorted midterms
2. Tell the grad students to sort their own pile, then give it back

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done!

Stanford University

Grad student’s sorting algorithm:

Sorting ~250 exams is still a non-trivial task! Luckily, the grad
students don’t have to do it themselves!

1. Find two SLs, give each half of the unsorted midterms
2. Tell the SLs to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple
combine algorithm

4. Done! (give your sorted pile to professor)

Stanford University

SL’s sorting algorithm:

1. Find two students, give each half of the unsorted midterms
2. Tell the students to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give sorted pile to grad student)

Stanford University

Student’s sorting algorithm:

1. Find two visiting prospective freshmen (“profros”), give each
half of the unsorted midterms

2. Tell the profros to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give sorted pile to SL)

Stanford University

ProFro’s sorting algorithm:

1. By now, the pile only has zero or one exam in it (for
the sake of this example, assume the starting number of
exams makes this true at this point)

2. Done! (give sorted pile to student)

Stanford University

Consider an arbitrarily chosen (generic) particular exam and mentally
track its progress throughout the algorithm.

How many times does your exam pass through the
merge algorithm?

1 time

2 times

O(logn) times

@(n) times
Other/none/more than one

moow»

(Recall © means the same as O but where the time is a best
match, not a potentially distant upper bound.)

Stanford University

BigO Analysis of Mergesort

Every paper is merged log(n) times

= This is the number of times we can divide the stack of n
papers by 2 before we can’t divide anymore

There are n papers
O(nlogn)

Stanford University

Merge Sort runtime intuition

Merge sort performs O(N) operations on each level. (width)
= Each level splits the data in 2, so there are log, N levels. (height)
» Product of these = N *log, N = O(N log N). (area)
= Example: N = 32. Performs ~ log, 32 = 5 levels of N operations each:
HEEEEEEEEER 2 W&
P y f ‘5
%‘5 ‘ 1 L[] e T4
n 8 Sls
5 | LT 4 _shaurk
21 LOCOLOEDEDEOCOEOEIE -

| INOD OO0 opdoopiiotoiofootoaoag -« \

width = N Stanford University

Merge Sort

= Compare the best case and worst case of Merge sort (tight Big-O of
each):
A. Best case = Worst case
B. Best case < Worst case
Why? Explain very specifically in terms of the structure of the code.

Quicksort

Stanford University

Divide & Conquer

Imagine we want students to line up in alphabetical order to pick
up their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”
“Everybody in the second half, go over there!”

» At this point, we at least have some kind of division based
on ordering, but it's very crude. Each of the two “over there”
groups is completely unsorted within the group, but...

2. ...atleast now you have two groups that are each smaller
and easier to sort, so recursively sort each half.

That’s it!*

* ok, actually there are some details...

Stanford University

Divide & Conquer

Imagine we want students to line up in alphabetical order to pick
up their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”

“Everybody in the secong_ half, go over there!”

» At this point, we at least hawe some kind of division based
on ordering, but it's very crud&, Each of the two “over there”
groups is completely unsorted Within the group, but...

2. ...atleast now you have two groug at o —
and easier to sort, so recursively SEEUEIRiETaRe(e][gle the work of finding
the actual median, we just choose an
That’s it!* arbitrary or random element to be the
divider. Say, the first array index of
the group, or randomly select an

* ok, actually there are some details

array index from the group.

Quicksort

= Consider the best case and worst case of Quicksort (best/tight
characterization in each case)

A. Best case = Worst case

(_B. Best case < Worst case D
Why? Explain very specifically in terms of the structure of the code.

