
Beyond BSTs !
(we can do better?!)

Ilan Goodman
Thanks to Keith Schwarz for teaching me multiple classes on this
material and for letting me borrow gratuitously from your lecture

examples—you rock! ☺

What We’ve Seen So Far

•  Balanced BSTs are useful in implementing
Maps and Sets and can be used for sorting

•  In fact, the Θ(n log n) time it takes to sort
using a balanced BST is optimal for any
comparison-based sorting algorithm
– Take CS 161 for more details ☺

•  What does it mean to do “better”?

“Better” than Balanced BSTs

•  Additional functionality
– containsPrefix in Lexicon	

•  Additional input guarantees
– Only storing integers in a known range, e.g.

•  Non-uniform access patterns
– Weight-balanced BSTs and splay trees

•  Not enough time to talk about these last
two today, but take CS 166 for more details

Outline for Today

•  Strings and tries
– How do we implement our last ADT, the
Lexicon?

– What efficiency guarantees can we expect?
– How does this relate to everything we’ve

learned the rest of the quarter?

Ordered Dictionaries

•  Key operations:
– insert/delete/lookup	
– containsPrefix (for strings)

•  Balanced BST does each of these in
O(log n) time … assuming comparisons
take constant time

String Comparisons

•  How long, in the worst case, does it take
to compare strings of lengths L1 and L2?
– A) O(1)
– B) O(min{L1, L2})
– C) O(L1 + L2)
– D) O(1 + (L2 – L1))
– E) Other/none of the above/multiple of the

above/unknowable

String Comparisons

•  How long, in the worst case, does it take
to compare strings of lengths L1 and L2?
– A) O(1)
– B) O(min{L1, L2})
– C) O(L1 + L2)
– D) O(1 + (L2 – L1))
– E) Other/none of the above/multiple of the

above/unknowable

Implementing Lexicon with BSTs

•  If the longest string in our Lexicon has
length L, the best bound we can get for our
key operations (insert/lookup/delete/
containsPrefix) is O(L log n)

•  We often use Lexicons to represent
English, for example, so n is large
(~1,000,000) and L is also non-negligible

•  Can we do better?

Implementing Lexicon with Hash
Tables

•  If we back our Lexicon with a hash table,
we can knock the insert/lookup/
delete	operations to O(L) time (expected,
amortized)

•  It now takes O(Ln) time to check if a prefix
exists, which is unacceptable in many
applications

•  Can we do better?

Rethinking Hashing

•  Hashing does well except on
containsPrefix, so could we just change
it a little to improve our time bounds?

•  In a hash table, we use the hash of the
string to figure which bucket it goes in

•  What if we had a really bad hash function,
like the first letter of the string?

•  A
•  AB
•  ABOUT
•  AD
•  ADAGE
•  ADAGIO
•  BAR
•  BARD
•  BARN
•  BE
•  BED
•  BET
•  BETA
•  CAN
•  CANE
•  CAT
•  DIKDIK
•  DIKTAT

•  A
•  AB
•  ABOUT
•  AD
•  ADAGE
•  ADAGIO
•  BAR
•  BARD
•  BARN
•  BE
•  BED
•  BET
•  BETA
•  CAN
•  CANE
•  CAT
•  DIKDIK
•  DIKTAT

Source: http://images.mentalfloss.com/sites/default/files/styles/
insert_main_wide_image/public/istock_000019851871_small.jpg and Keith Schwarz

A B C D
•  A
•  AB
•  ABOUT
•  AD
•  ADAGE
•  ADAGIO

•  BAR
•  BARD
•  BARN
•  BE
•  BED
•  BET
•  BETA

•  CAN
•  CANE
•  CAT

•  DIKDIK
•  DIKTAT

A B C D
•  “”
•  B
•  BOUT
•  D
•  DAGE
•  DAGIO

•  AR
•  ARD
•  ARN
•  E
•  ED
•  ET
•  ETA

•  AN
•  ANE
•  AT

•  IKDIK
•  IKTAT

A B C D
•  B
•  BOUT
•  D
•  DAGE
•  DAGIO

•  AR
•  ARD
•  ARN
•  E
•  ED
•  ET
•  ETA

•  AN
•  ANE
•  AT

•  IKDIK
•  IKTAT

Recursive Data Structures?

•  That seems to look a bit nicer, but why
stop here?

•  Each bucket has a list of strings in it that
could be sorted into smaller buckets based
on their first letters

•  We can do this until each bucket
represents only one letter

A B C D
•  B
•  BOUT
•  D
•  DAGE
•  DAGIO

•  AR
•  ARD
•  ARN
•  E
•  ED
•  ET
•  ETA

•  AN
•  ANE
•  AT

•  IKDIK
•  IKTAT

A B C D
B D A E A I

•  B
•  BOUT

•  D
•  DAGE
•  DAGIO

•  AR
•  ARD
•  ARN

•  E
•  ED
•  ET
•  ETA

•  AN
•  ANE
•  AT

•  IKDIK
•  IKTAT

A B C D
B D A E A I

•  “”
•  OUT

•  “”
•  AGE
•  AGIO

•  R
•  RD
•  RN

•  “”
•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A B C D
B D A E A I

•  OUT •  AGE
•  AGIO

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

•  OUT •  AGE
•  AGIO

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

•  AGE
•  AGIO

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

O

•  UT

•  AGE
•  AGIO

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

O

U

•  T

•  AGE
•  AGIO

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

O

U

T

•  GE
•  GIO

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

O

U

T

A

•  IO
•  E

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

O

U

T

A

G

•  O

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

O

U

T

A

G

E I

O

•  R
•  RD
•  RN

•  D
•  T
•  TA

•  N
•  NE
•  T

•  KDIK
•  KTAT

A
B C

D

B D A E
A I

O

U

T

A

G

E I

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BET

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BET

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BET

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BET

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BET

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
ADA

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
ADA

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
ADA

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
ADA

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
ADA

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
DITTO

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
DITTO

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
DITTO

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
DITTO

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
DITTO

Tries

•  Congratulations, we’ve just created a trie!
•  Origin of the word: retrieval
•  Pronounced “try” (not “tree”) because

professors enjoy needlessly confusing
students for sport
– Edward Fredkin, who coined this term,

pronounces it “tree”
•  Also known as a “prefix tree”

Tries

•  A trie is a tree where each node stores:
– A bit indicating whether the root-node path to

this node represents a valid word
– A map (could be an array or a tree) from

characters to child pointers
•  Each node corresponds to the string given

by the path traced from the root to that
node

lookup and containsPrefix in
Tries	

•  As we already saw, if a word or prefix has
length L, we need to follow L pointers to
get to the node corresponding to that
word/prefix

•  Assuming each pointer can be accessed/
traversed in O(1) time, this takes O(L) time

•  This is independent of n, the number of
strings in our trie!

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
How would we
insert CART?

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

R

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CART

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
How would we
insert CAR?

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
CAR

R

T

insert in Tries	

•  How long does it take to insert a word of
length L into a trie with n nodes?
– A) O(1)
– B) O(L)
– C) O(log n)
– D) O(L log n)
– E) Other/none of the above/multiple of the

above/unknowable

insert in Tries	

•  How long does it take to insert a word of
length L into a trie with n nodes?
– A) O(1)
– B) O(L)
– C) O(log n)
– D) O(L log n)
– E) Other/none of the above/multiple of the

above/unknowable

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
How would we
delete BAR?

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BAR

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
How would we
delete BARD?

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

D N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARD

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
How would we
delete BARN?

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R

N

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

R D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D A E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
BARN

R

T

O

A
B C D

B D E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
How would we
delete BATTY?

R

T

O

A
B C D

B D E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
BATTY

R

T

O

A
B C D

B D E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
BATTY

R

T

O

A
B C D

B D E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
BATTY

R

T

O

A
B C D

B D E
A I

O

U

T

A

G

E I

D T

A

N T

E

K

D T

A

T

I

K
BATTY

R

T

delete in Tries	

•  How long does it take to delete a word of
length L from a trie with n nodes?
– A) O(1)
– B) O(L)
– C) O(log n)
– D) O(L log n)
– E) Other/none of the above/multiple of the

above/unknowable

delete in Tries	

•  How long does it take to delete a word of
length L from a trie with n nodes?
– A) O(1)
– B) O(L)
– C) O(log n)
– D) O(L log n)
– E) Other/none of the above/multiple of the

above/unknowable

Space Efficiency of Tries

•  While the time efficiency for our trie is
wonderful, it takes up a lot of space

•  Each node needs to store a map/tree/
array and we need a node for every letter

•  Can improve the space usage a bit via
Patricia tries, e.g. (outside the scope of this
course, take 166 for details!)

Tradeoffs
•  Is this really “better” than a BST?
•  Data structures in particular, and CS/

science/engineering/life in general, is all
about making tradeoffs
– Time vs. space efficiency
– Worst-case vs. average-case
– Which operations to optimize
– Theory vs. practice
– How to best allocate your time or resources
– Etc.

Stanford Library ADTs Summary

•  We’ve now seen how to implement virtually
every Stanford library ADT!
–  Vector/Stack/Queue/List: Dynamically

allocated array or linked list
–  Map/Set: BST or hash table
–  Lexicon: Trie (or DAWG)
–  Grid: Multidimensional array
–  PriorityQueue: Heap (in some variant)
–  Graph: Adjacency list, adjacency matrix, or

incidence matrix	

Other Cool Stuff to Research
•  Read about it on your own or take CS 161 and 166 (or go to my OH)!

–  Suffix trees/arrays (related to tries)
–  Patricia tries
–  DAWGs and GADDAGs
–  Linear-time sorting algorithms
–  Weight-balanced trees and static optimality
–  Splay trees and dynamic optimality
–  van Emde Boas (vEB) trees and x- and y-fast tries
–  Augmented trees
–  Self-balancing BSTs (we’ve discussed a few already)
–  B-trees
–  Order-statistic trees
–  Other specialized trees
–  String matching
–  Formal analysis of all these data structures/algorithms
–  Etc.

