


What We’ve Seen So Far

* Balanced BSTs are usetul in implementing
Maps and Sets and can be used for sorting

* In fact, the O(n log n) time it takes to sort
using a balanced BST is optimal for any
comparison-based sorting algorithm

— Take CS 161 for more details ©
« What does it mean to do “better”?



“Better” than Balanced BSTs

Additional functionality
— containsPrefix in Lexicon

Additional input guarantees

— Only storing integers in a known range, e.g.
Non-uniform access patterns

— Weight-balanced BSTs and splay trees

Not enough time to talk about these last
two today, but take CS 166 for more details



Outline for Today

* Strings and tries

— How do we implement our last ADT, the
Lexicon?

— What efficiency guarantees can we expect?

— How does this relate to everything we’ve
learned the rest of the quarter?



Ordered Dictionaries

* Key operations:
—insert/delete/lookup
— containsPrefix (for strings)

« Balanced BST does each of these in

O(log n) time ... assuming comparisons
take constant time



String Comparisons

« How long, in the worst case, does it take
to compare strings of lengths L, and L,?
—-A) O(1)
— B) O(min{L,, L,})
- C)O(L, + L,)
-D)O(1 +(L,-Ly))

— E) Other/none of the above /multiple of the
above /unknowable



String Comparisons

« How long, in the worst case, does it take
to compare strings of lengths L, and L,?
—-A) O(1)
— B) O(min{L,, L,})
- C)O(L, + L,)
-D)O(1 +(L,-Ly))

— E) Other/none of the above /multiple of the
above /unknowable



Implementing Lexicon with BSTs

« If the longest string in our Lexicon has
length L, the best bound we can get for our
key operations (insert/lookup/delete/
containsPrefix)is O(L log n)

* We often use Lexicons to represent

English, for example, so n is large
(~1,000,000) and L is also non-negligible

e Can we do better?



Implementing Lexicon with Hash
Tables

* If we back our Lexicon with a hash table,
we can knock the insert/lookup/
delete operations to O(L) time (expected,
amortized)

* It now takes O(Ln) time to check if a prefix
exists, which is unacceptable in many
applications

e Can we do better?



Rethinking Hashing

« Hashing does well except on
containsPrefix, so could we just change
it a little to improve our time bounds?

* In a hash table, we use the hash of the
string to figure which bucket it goes in

« What if we had a really bad hash function,
like the first letter of the string?






- A

- AB

- ABOUT

- AD

« ADAGE

« ADAGIO

« BAR

« BARD

* BARN

* BE

« BED

« BET

« BETA

« CAN

« CANE

« CAT

« DIKDIK

- DIKTAT = AR
‘:i;’:':f-“ :':.‘ _:;\.‘t e '."},-_’ :4:2 # ':"‘“‘\ ’.‘.

http: / /images.mentalfloss.com /sites / default/files / styles /
insert main wide image/public/istock 000019851871 small.jpg













Recursive Data Structures?

* That seems to look a bit nicer, but why
stop here?

 Each bucket has a list of strings in it that
could be sorted into smaller buckets based
on their first letters

e We can do this until each bucket
represents only one letter























































































Tries

Congratulations, we’ve just created a trie!
Origin of the word: retrieval

Pronounced “try” (not “tree”) because
professors enjoy needlessly confusing
students for sport

— Edward Fredkin, who coined this term,
pronounces it “tree”

Also known as a “prefix tree”



Tries

e A trieis a tree where each node stores:

— A bit indicating whether the root-node path to
this node represents a valid word

— A map (could be an array or a tree) from
characters to child pointers

 Each node corresponds to the string given
by the path traced from the root to that
node



lookup and containsPrefix in
Tries

« As we already saw, if a word or prefix has
length L, we need to follow L pointers to
get to the node corresponding to that
word / prefix

 Assuming each pointer can be accessed /
traversed in O(1) time, this takes O(L) time

* This is independent of n, the number of
strings in our trie!






















































insert in Iries

* How long does it take to insert a word of
length L into a trie with n nodes?
—-A)O(1)
—B) O(L)
— C) O(log n)
—D) O(L log n)

— E) Other/none of the above /multiple of the
above /unknowable



insert in Iries

* How long does it take to insert a word of
length L into a trie with n nodes?
—-A)O(1)
—B) O(L)
— C) O(log n)
—D) O(L log n)

— E) Other/none of the above /multiple of the
above /unknowable












































































































delete in Tries

* How long does it take to delete a word of
length L from a trie with n nodes?
—-A) O(1)
—B) O(L)
— C) O(log n)
—D) O(L log n)

— E) Other/none of the above /multiple of the
above /unknowable



delete in Tries

* How long does it take to delete a word of
length L from a trie with n nodes?
—-A) O(1)
—B) O(L)
— C) O(log n)
—D) O(L log n)

— E) Other/none of the above /multiple of the
above /unknowable



Space Etficiency of Tries

» While the time efficiency for our trie is
wonderful, it takes up a lot of space

 Each node needs to store a map/tree/
array and we need a node for every letter

 Can improve the space usage a bit via
Patricia tries, e.g. (outside the scope of this
course, take 166 for details!)



Tradeoffs

e Is this really “better” than a BST?

» Data structures in particular, and CS/
science / engineering/life in general, is all
about making tradeofts

— Time vs. space efficiency

— Worst-case vs. average-case

— Which operations to optimize

— Theory vs. practice

— How to best allocate your time or resources
— Etc.



Stanford Library ADTs Summary

« We've now seen how to implement virtually
every Stanford library ADT!

— Vector/Stack/Queue/List: Dynamically
allocated array or linked list

— Map/Set: BST or hash table

— Lexicon: Trie (or DAWGQG)

— Grid: Multidimensional array

— PriorityQueue: Heap (in some variant)

— Graph: Adjacency list, adjacency matrix, or
incidence matrix



Other Cool Stuff to Research

* Read about it on your own or take CS 161 and 166 (or go to my OH)!
— Sulffix trees/arrays (related to tries)
— Patricia tries
— DAWGs and GADDAGSs
— Linear-time sorting algorithms
— Weight-balanced trees and static optimality
— Splay trees and dynamic optimality
— van Emde Boas (VEB) trees and x- and y-fast tries
— Augmented trees
— Self-balancing BSTs (we’ve discussed a few already)
— B-trees
— Order-statistic trees
— Other specialized trees
— String matching
— Formal analysis of all these data structures/algorithms
— Etc.



