
Programming Abstractions

Cynthia Lee

C S 1 0 6 X

Today’s Topics

1. Quick final exam discussion

 Details/logistics, topics, sources for practice problems

2. Quarter wrap-up

 Putting it all together: what have we accomplished together this

quarter?

3. What next?

 Options for continuing your passion for CS after this quarter is done

 Preview of CS107: stack exploits

Final Exam

Logistics

 Open notes: 2 pages (4 sides)

 Open textbook

 3 hours

 In this room (Gates B01)

Final Exam Topics

 ADTs

 Recursion

 Backtracking

 Objects and classes

 Big-O analysis

 Pointers and dynamic memory

 Trees: heaps, binary search trees, tries, types of traversals

 Hashing

 Graphs: Dijkstra's, A*, Kruskals, BFS, DFS

 Inheritance, Polymorphism

 Sorting algorithms

5

Final Exam Study Strategy

 Don’t memorize things—either write it in notes, or learn the concept

› If you’ve got flash cards, you’re approaching this with the wrong mindset

› No big multiple choice/true-false section where “memorized” facts would be

tested

 Don’t read the book

› Computer science is about creating things, so do some practice problems

› Re-do Socrative questions from lecture, do old section problems, do CS106B

practice exams as warm-up for our practice exams

› Look at lecture slides or book as needed for review of things you identify as

weak points

 Don’t stress

› Most of the really mind-bending topics (recursion, pointers) were on the

midterm, and you’ve had more time to let those settle in

6

Big O Quick Reference (see also http://bigocheatsheet.com/)

What Cost

• Hash table average case (good design) O(1)

• Balanced trees

• Heap, BST with balancing such as Red-Black

• Binary search on sorted array

O(logn)

• Linked list find

• Inserting into beginning/middle of array

• Hash table worst case

• Unbalanced tree (e.g. BST) worst case

O(n)

• Good sorting

• Mergesort, Heapsort, Quicksort (expected)

O(nlogn)

• Bad sorting

• Insertion, Bubble, Selection, Quicksort (worst case)

O(n2)

Quarter Wrap-Up
What did we set out to do in the beginning?

Where are we now?

Goals for this Course

 Learn how to model and solve complex problems with

computers.

 To that end:

 Explore common abstractions for representing problems.

 Harness recursion and understand how to think about

problems recursively.

 Bring added rigor to your understanding of algorithmic

performance, so you can quantitatively compare approaches

for solving problems.

From here on out, there are no obvious answers to
any problem worth your hourly rate. 

• Programming is all about exploring new ways to model and

solve problems.

• There are CHOICES and TRADEOFFS in how we model these

and how we implement them! (array or linked list? BST or hash

table?)

• Skilled computer scientists recognize that any problem worth

tackling has many possible models and many possible

solutions, none of which is clearly better than the others in all

dimensions—tradeoffs!

You are part of the most competitive group at this level,

in the best CS department in the world,

and you are so, so close to completing this course!

Congratulations!!
You’ve almost made it through CS106X!

 So…what next?

That’s a lot of material to cover in 10 weeks

What comes next?
You’re conquering this mountain, let’s find some more 

CS106B/X

Programming

Abstractions

CS107
Computer

Organization and

Systems

CS110

Principles of

Computer Systems

CS103
Mathematical

Foundations of

Computing

CS109
Intro to Probability

for Computer

Scientists

CS161

Design and Analysis

of Algorithms

The CS Core

T
h

e
o

ry
S

y
s
te

m
s

CS106B/X

Programming

Abstractions

CS107
Computer

Organization and

Systems

CS110

Principles of

Computer Systems

CS103
Mathematical

Foundations of

Computing

CS109
Intro to Probability

for Computer

Scientists

CS161

Design and Analysis

of Algorithms

The CS Core

T
h

e
o

ry
S

y
s
te

m
s

CS106B/X

Programming

Abstractions

CS107
Computer

Organization and

Systems

CS110

Principles of

Computer Systems

CS103
Mathematical

Foundations of

Computing

CS109
Intro to Probability

for Computer

Scientists

CS161

Design and Analysis

of Algorithms

The CS Core

T
h

e
o

ry
S

y
s
te

m
s

Can computers solve all problems?
Spoiler alert: no!

Why are some problems harder than others?
We can do find in an unsorted array in O(N), and we can sort an

unsorted array in O(NlogN). Is sorting just inherently a harder problem,

or are there better O(N) sorting algorithm yet to be discovered?

How can we be certain about this?

CS107
Computer Organization and Systems

How do we encode text, numbers,

programs, etc. using just 0s and 1s?

Where does memory come from?

How is it managed?

How do compilers, debuggers, etc. work?

CS107 in the news: Heartbleed

 In April 2014, security experts warned that
users of thousands of major websites
needed to change their passwords due to
potential exposure caused by the
“Heartbleed” vulnerability

 Heartbleed exploited a buffer overrun bug
in OpenSSL

› SSL is the layer that secures web
interactions, i.e., it’s what make the “s” in
“https://” mean something

CS107 in the news: Heartbleed

 The protocol allows you to send
“heartbeat” messages, which basically say:

› Are you still there? If you are,
repeat this word back to me:
"hello" [0x0005 bytes].

› Each char is one byte, so 5 letters

 Unfortunately, the software also let you
send messages like this:

› Are you still there? If you are,
repeat this word back to me:
"hello" [0xFFFF bytes].

› That’s 65535 bytes—much more than the
length of "hello"!

› So the software would continue for-
looping past the end of the "hello"
array, sending information back

› Which causes an error, right?
RIGHT?? Turns out, no.

What CS107 Isn't

 CS107 is not a litmus test for whether you can be a computer scientist.

 You can be a great computer scientist without enjoying low-level systems

programming.

 CS107 is not indicative of what programming is “really like.”

 CS107 does a lot of low-level programming. You don't have to do low-level

programming to be a good computer scientist.

CS107E
Computer Organization and Systems—Embedded

 Counts for prerequisites etc. the same as regular CS107, but covers

the topics with a new twist: embedded work on Rasberry Pi

CS107E

Computer Systems from the Ground Up

Pat Hanrahan

Dawson Engler

Julie Zelenski

FAQ (vs CS107)

 Same goals: understand how computers represent data and

execute programs; tools

 Different approach: bare metal on the Raspberry Pi; build a

working personal computer from scratch

 Logistics

› Same format: weekly assignments and labs

› Assignments build on each other

› No exams, but a final project

› ARM vs X86

› More hardware (thinker Maker Faire, breadboard)

› Enrollment limited to 40; Application through cs107e on

Axess; Due 12/12; still lots of openings!!

› Will be offered in winter and spring

Other CS Courses

CS9
Interviewing for Software Jobs

 1 unit, 1 meeting per week, little to no outside work

 Prereq: 106B/X

 Practice real job interview questions

 Additional topics such as resume polish, negotiating once

you have multiple offers, differences between roles (Project

Management vs Developer vs Test Engineer)

 Special guests from industry!

Taught by Cynthia Lee, Keith Schwarz

Offered each autumn quarter

CS181
Computers, Ethics, and Public Policy

 Some sample news headlines recently:

 Edward Snowden reveals that NSA knows more about you than

your parents do

 GamerGate: about harassing women, or about ethics in game

journalism?

 How should AirBnB be taxed?

 The password to launch the US nuclear arsenal was 00000000

We have the power to control and create technology, but how

should we use it?

CS108
Object-Oriented Systems Design

 How do you build large software systems in a team?

 Introduction to things you need to know for work in the “real world”:

 Unit-testing frameworks

 Object-oriented design

 Multithreaded applications

 Databases and web applications

 Source control

CS193
Language-specific courses

 Misc. offerings throughout the year, focused on specific technologies:

 CS193A: Android Programming

 CS193C: Client-Side Web Technologies

 CS193I: iOS Programming

 CS193L: Lua Programming

 CS193P: iPhone and iPad programming

 Great for learning particular technologies.

Options besides CS Major

CS Minor: only 5 more classes!

 103, 107, 109, two your choice—fun!

CS Coterminal MS degree

 Earn an MS in CS while you are here earning your BS

 Possible for CS majors and other majors

› ex: Math major, CS co-term

CS107 preview: Remember stack frames?

Memory main()

Heap

myfunction() x:

xfac:

factorial() n: 10

0

10

0

