CS106X
Autumn 2015 Cynthia Lee

Section 1 (Week 2) - SOLUTION

Problem 1: Publishing Stories

There’s the one-pass approach that just appends characters from the template to the running
story, unless that character is ' { ', in which case we extract everything up through the
matching '} ' and replace it with a string from the data map.

string generateStory(string storyTemplate, Map<string, string>& data) {
string story;

for (int i = 0; i < storyTemplate.size(); i++) {
if (storyTemplate[i] != '{') {
story += storyTemplatel[il];
} else {

int end = storyTemplate.find('}', 1 + 1);

string token = storyTemplate.substr(i + 1, end - 1 - 1);
story += dataltoken];

i = end;

}

return story;

}

Another approach is to iterate over the data map using the CS106 f£oreach extension and
drive the substitution that way. It’s less efficient, but it’s more straightforward, and a perfectly
acceptable answer for the purposes of a discussion section.

static string substituteOneToken (string story, string token, string value) {
int start = 0;
while (true) {

int found story.find (token, start);

if (found == string::npos) return story;
story.replace (found, token.size(), value);
start = found + value.size() + 1;

}

string generateStory(string storyTemplate, Map<string, string>& data) {
string story = storyTemplate;
foreach (string token in data) {
token = '{' + token + '}';
story = substituteOneToken (story, token, data[tokenl]);
}

return story;



Problem 2: Keith Numbers

My approach: generate the Fibonacci-esque sequence for all numbers, but only enough needed
to decide whether a number is Keith or not. The uncreative programmer in me went with a
name of generateKeithSequence

static void generateKeithSequence (Vector<int>& sequence, int n) {
string numString = integerToString(n);
int numDigits = numString.size();
for (int i = 0; i1 < numDigits; i++) {
sequence.add (numString[i] - '0"'");

}

while (sequence[sequence.size() - 1] < n) {
int next = 0;
for (int i = sequence.size() - numDigits; 1 < sequence.size(); i++) {
next += sequenceli];

}

sequence.add (next) ;

}

Note the above function assumes the incoming Vector<int> is empty and should be
populated with the relevant sequence of numbers. Provided you understand what the above
function is doing, you'll see how it contributes to the larger program, which I capture in amain
function right here:

int main () {
for (int n = 1; n < 10000; n++) {
Vector<int> sequence;
generateKeithSequence (sequence, n);

if (sequence[sequence.size() - 1] == n) {
// sequence ends in n? we have a Keith number!!
cout << n << ": [";
for (int i = 0; i < sequence.size() - 1; i++) {

cout << sequence[i] << ", ";

}

cout << n << "]" << endl;

}

cout << endl;
cout << "That's all of them! " << endl;
return 0;



