
CS106X

Autumn 2015 Cynthia Lee

Section 1 (Week 2) - SOLUTION

Problem 1: Publishing Stories

There’s the one-pass approach that just appends characters from the template to the running
story, unless that character is '{', in which case we extract everything up through the
matching '}' and replace it with a string from the data map.

string generateStory(string storyTemplate, Map<string, string>& data) {

 string story;

 for (int i = 0; i < storyTemplate.size(); i++) {

 if (storyTemplate[i] != '{') {

 story += storyTemplate[i];

 } else {

 int end = storyTemplate.find('}', i + 1);

 string token = storyTemplate.substr(i + 1, end - i - 1);

 story += data[token];

 i = end;

 }

}

return story;

}

Another approach is to iterate over the data map using the CS106 foreach extension and
drive the substitution that way. It’s less efficient, but it’s more straightforward, and a perfectly
acceptable answer for the purposes of a discussion section.

static string substituteOneToken(string story, string token, string value) {

 int start = 0;

 while (true) {

 int found = story.find(token, start);

 if (found == string::npos) return story;

 story.replace(found, token.size(), value);

 start = found + value.size() + 1;

 }

}

string generateStory(string storyTemplate, Map<string, string>& data) {

 string story = storyTemplate;

 foreach (string token in data) {

 token = '{' + token + '}';

 story = substituteOneToken(story, token, data[token]);

 }

 return story;

}

 2

 Problem 2: Keith Numbers

My approach: generate the Fibonacci-esque sequence for all numbers, but only enough needed
to decide whether a number is Keith or not. The uncreative programmer in me went with a
name of generateKeithSequence

static void generateKeithSequence(Vector<int>& sequence, int n) {

 string numString = integerToString(n);

 int numDigits = numString.size();

 for (int i = 0; i < numDigits; i++) {

 sequence.add(numString[i] - '0');

 }

 while (sequence[sequence.size() - 1] < n) {

 int next = 0;

 for (int i = sequence.size() - numDigits; i < sequence.size(); i++) {

 next += sequence[i];

 }

 sequence.add(next);

 }

}

Note the above function assumes the incoming Vector<int> is empty and should be
populated with the relevant sequence of numbers. Provided you understand what the above
function is doing, you’ll see how it contributes to the larger program, which I capture in a main
function right here:

int main() {

 for (int n = 1; n < 10000; n++) {

 Vector<int> sequence;

 generateKeithSequence(sequence, n);

 if (sequence[sequence.size() - 1] == n) {

 // sequence ends in n? we have a Keith number!!

 cout << n << ": [";

 for (int i = 0; i < sequence.size() - 1; i++) {

 cout << sequence[i] << ", ";

 }

 cout << n << "]" << endl;

 }

 }

 cout << endl;

 cout << "That's all of them! " << endl;

 return 0;

}

