
CS106X

Autumn 2015 Cynthia Lee

Section 2 (Week 3) Handout
 Section problem authors include Marty Stepp and Jerry Cain.

Problem 1: Cannonballs (Recursion)

Write a function named cannonballs that returns the number of cannonballs in a square pyramid
of cannonballs of the given height. For example, in a square pyramid of height 3, the bottom layer
has 9 balls, the middle layer has 4, and there is one ball on top, so cannonballs(3) returns 14.
(You can assume that height won’t be negative).

int cannonballs(int height);

Problem 2: Reverse (Recursion)

Write a function named reverse that takes a string and reverses it. For example, reversing “Hello
World” returns “dlroW olleH”.

string reverse(string s);

Problem 3: Twiddles (Recursion)

Two English words are considered twiddles if the letters at each position are either the same,
neighboring letters, or next-to-neighboring letters. For instance, sparks and snarls are
twiddles. Their second and second-to-last characters are different, but p is just two past n in the
alphabet, and k comes just before l. A more dramatic example: craggy and eschew. They have
no letters in common, but craggy’s c, r, a, g, g, and y are -2, -1, -2, -1, 2, and 2 away from the
e, s, c, h, e, and w in eschew. And just to be clear, a and z are not next to each other in the
alphabet—there’s no wrapping around at all.

Write a recursive procedure called listTwiddles, which accepts a string str and a reference to
an English language Lexicon, and prints out all those English words that just happen to be str’s
twiddles. You’ll probably want to write a wrapper function. (Note: any word is considered to be a
twiddle of itself, so it’s okay to print it.)

static void listTwiddles(const string& str, const Lexicon& lex);

Problem 4: Making Change (Recursion)

For this problem, implement the following function:

static int countWaysToMakeChange(const Vector<int>& denominations, int amount)

The countWaysToMakeChange routine recursively computes the number of ways to make
change for the specified amount given an unlimited number of coins of the specified denominations.

 2

Download the lab starter code to work with the small test harness to exercise your implementation.
The test harness includes the following main function:

int main() {

 Vector<int> denominations;

 denominations += 25, 10, 5;

 cout << "Number of ways to make change for a dollar using " << denominations

 << ": " << countWaysToMakeChange(denominations, 100) << endl;

 denominations += 1;

 cout << "Number of ways to make change for a dollar using " << denominations

 << ": " << countWaysToMakeChange(denominations, 100) << endl;

 return 0;

}

Once properly implemented, the above main function should output the following:

Number of ways to make change for a dollar using {25, 10, 5}: 29

Number of ways to make change for a dollar using {25, 10, 5, 1}: 242

Of course, you’re free to cannibalize the test harness in any way you’d like if it’ll help confirm your
implementation is solid.

Problem 5: Letter Rectangles and Words (Backtracking recursion)

You are given a large collection of short, fat rectangles, where each half of each rectangle contains a
single letter, as with:

Given the option to rearrange, ignore, and rotate pieces, you’re charged with the task of identifying
all of the even-length English words that can be formed by chaining together some subset of the
pieces (where some may have been rotated). For the above set of pieces, the list of printed words
should surely include "plum", since the third-to-last rectangle can be placed after the second-to-
last rectangle (rotated so that the 'p' precede the 'l') to form "plum". Given the above set of
rectangles, you should also identify fun words like "allele", "lark", "muscle", "scales",
and "umbrella", in addition to quite a few others. Note that each rectangle can be used at most
one time per word, so that words like "sees" and "museum" can’t be formed.

Collectively implement the recursive function gatherWords, which accepts references to a
Vector<string> called rects (where each string is two characters), a Lexicon constant
called english, and an initially empty Lexicon called words, and populates words with the
collection of those words, and only those words, that can be formed using the rectangles in rects.
You should implement this using a wrapper function.

static void gatherWords(const Vector<string>& rects,

 const Lexicon& english, Lexicon& words)

l e s c r k s e l e u m l p a l b r

