
CS106X

Autumn 2015 Cynthia Lee

Section 2 (Week 3) – SOLUTION
 Problem authors include Marty Stepp and Jerry Cain.

Problem 1 Solution: Cannonballs

int cannonballs(int height) {

if (height == 0) {

return 0;

} else {

return height * height + cannonballs(height – 1);

}

}

Problem 2 Solution: Reverse

string reverse(string s) {

if (s == "") {

return "";

} else {

return reverse(s.substr(1)) + s[0];

}

}

Problem 3 Solution: Twiddles

Key observation: finding twiddles is the same as fixing the first letter (one of up to five possibilities)
and appending some twiddle of the remaining letters. A 'c' at str’s position 0, for instance,
encodes the fact that 'a', 'b', 'c', 'd', or 'e' might contribute to a potential twiddle at
position 0. And for each of those five possibilities at position 0, there are five contributions at
position 1, and for each of those 25 possible possibilities between 0 and 1 combined, there are five
independent contributions that might be made at position 2, and so on, and so on.

static void listTwiddles(const string& str, const Lexicon& lex) {
 listTwiddles("", str, 0, lex);
}

 The 0th argument is the empty string to clarify that no decisions made been made at the outset.
 The 2nd argument is 0 to be clear that str[0] is the character that tells us how me might

extend the empty string into five different prefixes of length 1.

 2

static void listTwiddles(const string& prefix, const string& str,
 int index, const Lexicon& lex) {

 if (!lex.containsPrefix(prefix)) return; // not strictly necessary
 if (index >= str.size()) {
 if (lex.contains(prefix))
 cout << prefix << endl;
 return;
 }

 for (char ch = str[index] - 2; ch <= str[index] + 2; ch++) {
 if (isalpha(ch)) {
 listTwiddles(prefix + ch, str, index + 1, lex);
 }
 }
}

Problem 4 Solution: Making Change

The exported countWaysToMakeChange takes two parameters, but my implementation
wraps around a single call to a three-argument version. The third argument dictates the lowest
index within denominations the call is allowed to use while constructing the various ways to
make change. Tacking on the 0 in the wrapped call makes it clear that all indices—from index 0
forward—are fair game.

static int countWaysToMakeChange(const Vector<int>& denominations,
 int amount) {
 return countWaysToMakeChange(denominations, amount, 0);
}

The three-argument version partitions the total number of ways to make change into two
categories—those that require one or more contributions of denoms.get(start), and those that
forbid any contributions of denoms.get(start). (Note that we’re constrained to use get
instead of operator[], because operator[] currently can’t be levied against a const
Vector.)

static int countWaysToMakeChange(const Vector<int>& denoms,
 int amount, int start) {
 if (amount == 0) return 1; // there’s 1 way to not give any change
 if (amount < 0) return 0; // it’s impossible to make negative change
 if (start >= denoms.size()) return 0; // no permitted denominations

 3

 return
 countWaysToMakeChange(denoms, amount - denoms.get(start), start) +
 countWaysToMakeChange(denoms, amount, start + 1);
}

Problem 5 Solution: Letter Rectangles and Words

My implementation wraps the three-argument version around a call to a four-argument version.
The overloaded version—that one that really does all of the work—keeps track of the running prefix
built up by an ordered selection of (possibly rotated) rectangles leading up to the call. Initially, we
haven’t selected any rectangles, which is why my wrapper passes an empty string in as the 0th
parameter.

static void gatherWords(const Vector<string>& rects,
 const Lexicon& english, Lexicon& words) {
 Vector<string> copy = rects;
 gatherWords("", copy, english, words);
}

static void gatherWords(const string& prefix, Vector<string>& rects,
 const Lexicon& english, Lexicon& words) {
 if (!english.containsPrefix(prefix)) // prefix is nonsense?
 return; // pretend we never made this call
 if (english.contains(prefix)) // prefix is a word?
 words.add(prefix); // incidentally print, but continue

 for (int i = 0; i < rects.size(); i++) {
 string rect = rects[i];
 rects.remove(i); // temporarily remove
 gatherWords(prefix + rect[0] + rect[1], rects, english, words);
 gatherWords(prefix + rect[1] + rect[0], rects, english, words);
 rects.insert(i, rect); // insert back
 }
}

