
CS106X  

Autumn 2015 Cynthia Lee 

Section 3 (Week 4) Handout 
          Problem and solution authors include Marty Stepp, Jerry Cain,  

Eric Roberts, Ilan Goodman, and Cynthia Lee. 
 

Problem 1: isSubsequence  [courtesy of Marty Stepp] 

Write a function named isSubsequence that takes two strings and returns if the second 
string is a subsequence of the first string. A string is a subsequence of another if it contains the 
same letters in the same order, but not necessary consecutively. You can assume both strings 
are already lowercased.  

 isSubsequence("computer", "core") returns false  
 isSubsequence("computer", "cope") returns true  
 isSubsequence("computer", "computer") returns true  

Use this function signature: bool isSubsequence(string big, string small)  
 

Problem 2: Domino Chaining [courtesy of Eric Roberts and Jerry Cain] 

The game of dominoes is played with rectangular pieces composed of two connected squares, 
each of which is marked with a certain number of dots.  For example, each of the following five 
rectangles represents a domino: 
 

 

 

Dominoes are connected end-to-end to form chains, subject to the condition that two 
dominoes can be linked together only if the numbers match, although it is legal to rotate 
dominoes 180˚ so that the numbers are reversed.  For example, you could connect the first, 
third, and fifth dominoes in the above collection to form the following chain: 
 

 

 
Note that the 3-5 domino had to be rotated so that it matched up correctly with the 4-5. 
 
Given a set of dominoes, an interesting question to ask is whether it is possible to form a chain 
starting at one number and ending with another.  For example, the example chain shown 
earlier makes it clear that you can use the original set of five dominoes to build a chain 
starting with a 1 and ending with a 3.  Similarly, if you wanted to build a chain starting with a 6 
and ending with a 2, you could do so using only one domino: 
 



  2  

 

 

On the other hand, there is no way—using just these five dominoes—to build a chain starting 
with a 1 and ending with a 6. 
 
Dominoes can, of course, be represented in C++ very easily as a pair of integers.  Assuming the 
type domino is defined as 

struct domino { 

 int first; 

 int second; 

}; 

 

write a predicate function: 
static bool chainExists(const Vector<domino>& dominoes, int start, int 

end); 

 

that returns true if it is possible to build a chain from start to finish using any subset of 
the dominoes in the dominoes vector.  To simplify the problem, assume that chainExists 
always returns true if start is equal to finish, because you can trivially connect any 
number to itself with a chain of zero dominoes.  (Don’t worry about what the chain is—worry 
only about the yes or not that comes back in the form of a bool.) For example, if dominoes 
is the domino set illustrated above, chainExists should produce the following results: 
 

chainExists(dominoes, 1, 3)  true 

chainExists(dominoes, 5, 5)  true 

chainExists(dominoes, 1, 6)  false 

 
 

Problem 3: Big O [Cynthia Lee and Ilan Goodman] 

These problems are here to start a conversation with your SL, who can explain the answer to 
each. You are not expected to be able to solve all of these right now, and memorizing the 
details of these is not what this class is about. However, my experience has been that many 
students in 106X are simply curious about some of these comparisons, so I thought it would be 
fun (?) to explore some of them in section. TL;DR: in X (as opposed to 106B), we sometimes do 
stuff just for fun and this is one of those times. 
 
For each pair, say whether 𝑓(𝑛) is 𝑂(𝑔(𝑛)), or 𝑔(𝑛) is 𝑂(𝑓(𝑛)), or both. 

a) 𝑓(𝑛) = 𝑛 log 𝑛 + 5𝑛   𝑔(𝑛) = 3𝑛 log 𝑛 
b) 𝑓(𝑛) = 10 log10 𝑛     𝑔(𝑛) = 2 log2 𝑛  
c) 𝑓(𝑛) = 1.01𝑛      𝑔(𝑛) = 1000𝑛3  
d) 𝑓(𝑛) = 1.6𝑛     𝑔(𝑛) = 2𝑛 
e) 𝑓(𝑛) = (log 𝑛)3    𝑔(𝑛) = 𝑛

1
5⁄  

f) 𝑓(𝑛) = 7𝑛 log(𝑛2)     𝑔(𝑛) = {
10𝑛2, 𝑛 < 100
100𝑛,   𝑛 ≥ 100

 


