
CS106X

Autumn 2015 Cynthia Lee

Section 4 (Week 5) – SOLUTION
 Problem and solution authors include Jerry Cain and Ilan Goodman

Problem 1 Solution: Superheroes Then and Now

State of memory just prior to the call to barbarella:

State of memory just before the call to barbarella exits:

ironman	

marineboy[0]	 marineboy[1]	

152

9189

stack heap

ironman	

marineboy[0]	 marineboy[1]	

152

9189

stack heap

storm	 catwoman	

507

No orphaned memory.

No orphaned memory.

 2

Problem 2 Solution: Bloom Filters and Sorted String Sets

Here’s my SortedStringSet interface:

class	SortedStringSet	{	
public:	
	 SortedStringSet(const	Vector<int	(*)(const	std::string&,	int)>&	hashers);	
	 ~SortedStringSet();	
	
		 int	size()	const	{	return	values.size();	}		
	 	
	 bool	contains(const	std::string&	value)	const;	
	 void	add(const	std::string&	value);	
					
private:	
	 Set<string>	values;	
	 Vector<int	(*)(const	std::string&,	int)>	hashers;	
	 bool	*footprints;	
	 int	alloclength;	
	 int	numfootprints;	
	 void	createEmptyBloomFilter();	
	 void	leaveFootprints(const	std::string&	value);	
	 void	rehash();	
};	

Everything below the Set<string>	values line is my own, and all of what’s new helps
to manage a Bloom filter. The two instance variables footprints and alloclength
team up to manage the Bloom filter as a manually managed array of Boolean footprints
that needs to be reallocated when we congest the filter with lots of true values.

The constructor and destructor are algorithmically straightforward. The primary reason I
decompose the constructor to call the helper createEmptyBloomFilter method is that I
need to execute the same exact code within the add method.

static	const	int	kInitBloomFilterLength	=	1001;	
SortedStringSet::SortedStringSet(
	 	 const	Vector<int	(*)(const	string&,	int)>&	hashers)	{	
	 this->hashers	=	hashers;	
	 alloclength	=	kInitBloomFilterLength;	
	 createEmptyBloomFilter();	
}	
	
SortedStringSet::~SortedStringSet()	{	
	 delete[]	footprints;	
}	
	
void	SortedStringSet::createEmptyBloomFilter()	{	
	 footprints	=	new	bool[alloclength];	
	 for	(int	i	=	0;	i	<	alloclength;	i++)	{	
	 	 footprints[i]	=	false;	
	 }	
	 numfootprints	=	0;	 	
}	

 3

Note that createEmptyBloomFilter assumes that alloclength has been initialized to
be the desired Bloom filter length before it’s called. As is always the case, we need to
manually zero out every entry in the footprints array, because C++ doesn’t support default
initialization like some other languages do. And because the Bloom filter is empty (e.g.
there are no trues anywhere in the array), numfootprints is set to 0.

The implementation of contains is potentially framed as a call to contains on the
encapsulated Set<string>. But before we commit to the more expensive
Set<string>::contains call, we examine the Bloom filter to see if the expected set of
footprints have been left by the accumulation of all prior add calls. If they haven’t been,
we know there’s no way the supplied string will be in the master Set. If they have
been, then and only then is it sensible to examine the master Set to see if the referenced
string is truly and officially present.

bool	SortedStringSet::contains(const	string&	value)	const	{	
	 for	(int	i	=	0;	i	<	hashers.size();	i++)	{	
	 	 int	hash	=	(hashers.get(i))(value,	alloclength);	//	.get()	works,	not	[]	
	 	 if	(!footprints[hash])	{	
	 	 	 return	false;	
	 	 }	
	 }	

	
	 return	values.contains(value);	
}	

The implementation of add is more complicated, because we need to check to see if the
Bloom filter is congested with a high fraction of footprints. Before we go on stamping
down even more footprints, we need to check if there are more trues than falses. If so,
we allocate a much larger filter, rehash all existing strings to leave new footprints, and
dispose of the old filter. Whether or not we got a new filter, we need to leave some
footprints on behalf of the supplied string, and then add it to the master Set.

static	const	double	kSaturationFactor	=	0.50;	
void	SortedStringSet::add(const	string&	value)	{	
	 if	(numfootprints	>	kSaturationFactor	*	alloclength)	{	
	 	 rehash();	
	 }	
	
		 leaveFootprints(value);	
	 values.add(value);	
}	
	
void	SortedStringSet::rehash()	{	
	 delete[]	footprints;	
	 alloclength	*=	hashers.size();	//	heuristic:	multiply	by	number	of	hashers	
	 createEmptyBloomFilter();	
	
	 for	(const	string&	value	:	values)	{	
	 	 leaveFootprints(value);	
	 }	
}	

 4

void	SortedStringSet::leaveFootprints(const	string&	value)	{	
	 for	(int	i	=	0;	i	<	hashers.size();	i++)	{	
	 	 int	hash	=	hashers[i](value,	alloclength);	
	 	 if	(!footprints[hash])	{	
	 	 	 numfootprints++;	
	 	 }	
	 	 footprints[hash]	=	true;	
	 }	 	
}	

