CS106X
Autumn 2015

Cynthia Lee

Section 4 (Week 5) — SOLUTION

Problem and solution authors include Jerry Cain and llan Goodman

Problem 1 Solution: Superheroes Then and Now

State of memory just prior to the call to barbarella:

stack

152

ole

marineboy|[

og

ironman

heap

AN

No orphaned memory.

State of memory just before the call to barbarella exits:

stack

152

ole

507

marineboy|[

og

ironman

/

/

d

d

storm

catwoman

heap

9189

No orphaned memory.




Problem 2 Solution: Bloom Filters and Sorted String Sets

Here’s my SortedStringSet interface:

class SortedStringSet {
public:

SortedStringSet(const Vector<int (*)(const std::string&, int)>& hashers);
~SortedStringSet();

int size() const { return values.size(); }

bool contains(const std::string& value) const;
void add(const std::string& value);

private:

}s

Set<string> values;

Vector<int (*)(const std::string&, int)> hashers;
bool *footprints;

int alloclength;

int numfootprints;

void createEmptyBloomFilter();

void leaveFootprints(const std::string& value);
void rehash();

Everything below the Set<string> values line is my own, and all of what’s new helps
to manage a Bloom filter. The two instance variables footprints and alloclength
team up to manage the Bloom filter as a manually managed array of Boolean footprints
that needs to be reallocated when we congest the filter with lots of true values.

The constructor and destructor are algorithmically straightforward. The primary reason |
decompose the constructor to call the helper createEmptyBloomFilter method is that |
need to execute the same exact code within the add method.

static const int kInitBloomFilterLength = 1001,
SortedStringSet: :SortedStringSet(

}

const Vector<int (*)(const string&, int)>& hashers) {
this->hashers = hashers;
alloclength = kInitBloomFilterLength;
createEmptyBloomFilter();

SortedStringSet: :~SortedStringSet() {

}

delete[] footprints;

void SortedStringSet::createEmptyBloomFilter() {

footprints = new bool[alloclength];

for (int i = @; i < alloclength; i++) {
footprints[i] = false;

}

numfootprints = 0;



3

Note that createEmptyBloomFilter assumes that alloclength has been initialized to
be the desired Bloom filter length before it’s called. As is always the case, we need to
manually zero out every entry in the footprints array, because C++ doesn’t support default
initialization like some other languages do. And because the Bloom filter is empty (e.g.
there are no trues anywhere in the array), numfootprints is set to @.

The implementation of contains is potentially framed as a call to contains on the
encapsulated Set<string>. But before we commit to the more expensive
Set<string>::contains call, we examine the Bloom filter to see if the expected set of
footprints have been left by the accumulation of all prior add calls. If they haven’t been,
we know there’s no way the supplied string will be in the master Set. If they have
been, then and only then is it sensible to examine the master Set to see if the referenced
string is truly and officially present.

bool SortedStringSet::contains(const string& value) const {
for (int i = @; i < hashers.size(); i++) {
int hash = (hashers.get(i))(value, alloclength); // .get() works, not []
if (!footprints[hash]) {
return false;
}
}

return values.contains(value);

}

The implementation of add is more complicated, because we need to check to see if the
Bloom filter is congested with a high fraction of footprints. Before we go on stamping
down even more footprints, we need to check if there are more trues than falses. If so,
we allocate a much larger filter, rehash all existing strings to leave new footprints, and
dispose of the old filter. Whether or not we got a new filter, we need to leave some
footprints on behalf of the supplied string, and then add it to the master Set.

static const double kSaturationFactor = 0.50;
void SortedStringSet::add(const string& value) {
if (numfootprints > kSaturationFactor * alloclength) {
rehash();

}

leaveFootprints(value);
values.add(value);

}

void SortedStringSet::rehash() {
delete[] footprints;
alloclength *= hashers.size(); // heuristic: multiply by number of hashers
createEmptyBloomFilter();

for (const string& value : values) {
leaveFootprints(value);

}



void SortedStringSet::leaveFootprints(const string& value) {
for (int i = @; i < hashers.size(); i++) {
int hash = hashers[i](value, alloclength);
if (!footprints[hash]) {
numfootprints++;

}

footprints[hash] = true;



