
CS106X

Autumn 2015 Cynthia Lee

Section 5 (Week 6) Handout
Problem and solution authors include Marty Stepp and Ilan Goodman

Problem 1: Linked Node Manipulation

Write the code that will produce the given "after" result from the given "before" starting
point by modifying links between the nodes shown and/or creating new nodes as needed.
There may be more than one way to write the code, but do NOT change any existing
node's data field value. If a variable does not appear in the "after" picture, it doesn't matter
what value it has after the changes are made.

 Before After
a)

b)

c)

d)

e)

f)

g)

list 2 1 3

list 2 1 list 1 3 2

list 2 1

temp 4 3

list 3 1 4 2

list 2 1

temp 4 3

list 3 1 2 4

list 2 1 3 list 2

list2 3 1

list 4 5 3 list 4 3 5

list 4 5 3 list 5 3

list2 3 4 5

list 2 1

 2

Problem 2: Linked List Member Functions

Each of the following subproblems asks you to add a member function to the LinkedList
class from lecture. In all cases, if your function deletes a node from the list, free the
associated memory for the node. Declare member functions as const if appropriate, if
they do not modify the state of the linked list. Generally, you should try to do these
problems without calling other member functions.

1. Write a member function isSorted that returns true if the list is in sorted
(nondecreasing) order and returns false otherwise. An empty list is considered to
be sorted. Bonus: solve this problem both recursively and non-recursively. Which
solution do you like better?

2. Write a member function deleteBack that deletes the last value (the value at the
back of the list) and returns the deleted value. If the list is empty, your method
should throw a string exception.

3. Write a member function reverse that reverses the order of the elements in the
list. For example, if the variable list initially stores the sequence of integers {1,	8,	
19,	4,	17}, then it should store the following sequence of integers after reverse
is called: {17,	4,	19,	8,	1}.

4. Write a member function doubleList that doubles the size of a list by appending
a copy of the original sequence to the end of the list. For example, if a variable
list stores the sequence of values {1,	3,	2,	7} and then we call this method, it
should store the following values after the call: {1,	3,	2,	7,	1,	3,	2,	7}. If
the original list contains N nodes, then you should construct exactly N nodes to be
added. You may not use any auxiliary data structures to solve this problem (no
array, Vector, stack, queue, string, etc.). Your method should run in O(N) time
where N is the number of nodes in the list.

5. Write a member function split that rearranges the elements of a list so that all
negative values appear before all of the non-negatives. For example, suppose a
variable list stores the following sequence of values: {8,	7,	-4,	19,	0,	43,	
-8,	-7,	2}. One possible arrangement (but certainly not the only one) after a call
to this method would be: {-4,	-8,	-7,	8,	7,	19,	0,	43,	2}. Do not swap
data fields or create any new nodes to solve this problem; you must rearrange the
list by rearranging the links of the list. You also may not use auxiliary structures like
arrays, ArrayLists, stacks, queues, etc., to solve this problem.

6. Write a member function stutter that doubles the size of a list by replacing every
integer with two of that integer. For example, if a variable list stores {1,	8,	19,	
4,	17}, afterward a call to this method, it should store {1,	1,	8,	8,	19,	19,	
4,	4,	17,	17}.

 3

Problem 3: Binary Tree Member Functions

Each of the following subproblems asks you to add a member function to the BinaryTree
class from lecture. In all cases, if your function deletes a node from the tree, free the
associated memory for the node. Declare member functions as const if appropriate, if
they do not modify the state of the binary tree.

1. height. Write a member function height that returns the height of a tree. The
height is defined to be the number of edges along the longest path from the root to
a leaf. For example, an empty tree has height -1, a tree of one node has height 0, a
node with one or two leaves as children is a tree of height 2, etc.

2. isBST. Write a member function isBST that returns whether or not a binary tree is
arranged in valid binary search tree (BST) order. Remember that a BST is a tree in
which every node n's left subtree is a BST that contains only values less than n's
data, and its right subtree is a BST that contains only values greater than n's data.

BST	
				8	
			/	\	
		4			9	
	/	\	
2			7	

not	a	BST	
				4	
			/	\	
		3			9	
	/	\	
1			2	

3. limitPathSum. Write a member function limitPathSum that accepts an integer
value representing a maximum, and removes tree nodes to guarantee that the sum
of values on any path from the root to a node does not exceed that maximum. For
example, if variable t refers to the tree below at left, the call of
t.limitPathSum(50);	will require removing node 12 because the sum from the
root down to that node is more than 50 (29 + 17 + -7 + 12 = 51). Similarly, we
have to remove node 37 because its sum is (29 + 17 + 37 = 83). When you remove
a node, you remove anything under it, so removing 37 also removes 16. We also
remove the node with 14 because its sum is (29 + 15 + 14 = 58). If the data stored
at the root is greater than the given maximum, remove all nodes, leaving an empty
(NULL) tree. Free memory as needed, but only remove nodes when necessary.

before	call	
											29	
									/				\	
						17								15	
					/		\						/		\	
			-7				37			4				14	
		/		\					\						/		\	
11			12				16			-9				19	

after	call	
											29	
									/				\	
						17								15	
					/									/	
			-7									4	
		/	
11	

	

4. isBalanced. Write a member function isBalanced that returns whether or not a
binary tree is balanced. A tree is balanced if its left and right subtrees are also
balanced trees whose heights differ by at most 1. The empty (NULL) tree is balanced
by definition. You may call solutions to other section exercises to help you.

 4

balanced	
				8	
			/	\	
		4			9	
	/	\	
2			7	

balanced	
				4	
			/	\	
		3			9	
	/	
1	

not	balanced	
				8	
			/	
		4	
	/	\	
2			7	

not	balanced	
				4	
			/	\	
		3			9	
	/					\	
1							5	
							/	
						2	

5. completeToLevel. Write a member function completeToLevel that accepts an
integer k as a parameter and adds nodes with value -1 to a tree so that the first k
levels are complete. A level is complete if every possible node at that level is non-
NULL. We will use the convention that the overall root is at level 1, its children are
at level 2, and so on. Preserve any existing nodes in the tree. For example, if a
variable called t refers to the tree below and you make the call of
t.completeToLevel(3); you should fill in nodes to ensure that the first 3 levels
are complete. Notice that level 4 of this tree is not complete. Keep in mind that you
might need to fill in several different levels. You should throw an integer exception
if passed a value for k that is less than 1.

before	call	
						17	
					/		\	
			83				6	
		/							\	
19									87	
		\							/	
			48			75	

after	call	
								17	
						/				\	
			83								6	
		/		\						/	\	
19			-1			-1			87	
		\											/	
			48							75	
	

6. countLeftNodes. Write a member function countLeftNodes that returns the
number of left children in the tree. A left child is a node that appears as the root of
the left-hand subtree of another node. For example, the tree in Problem 1 (a) above
has 3 left children (the nodes storing the values 5, 1, and 4).

Problem 4: Aesop’s Algorithms

(N.B.: This is a common coding interview question, so take a moment to think about it on
your own before discussing it with a neighbor.)

Write a function hasACycle(const	ListNode*&	head) that takes in a pointer to the
head of a linked list and returns true if the linked list contains a cycle and false
otherwise. For full credit, you are only allowed to have a constant space complexity (you
are only allowed O(1) auxiliary space for your algorithm). What is the time complexity of
your algorithm, in big-O notation? Is there a better algorithm?

Bonus problem: find the length of the loop (if one exists).

 5

Linked List Reference Sheet

ListNode	structure (represents a single data value in a linked list, and a link to the next
node)

struct	ListNode	{	
				int	data;									//	data	stored	in	this	node	
				ListNode*	next;			//	a	link	to	the	next	node	in	the	list	
	
				//	Constructs	a	node	with	the	given	data	and	a	NULL	next	link.	
				ListNode(int	data)	{	
								this->data	=	data;	
								this->next	=	NULL;	
				}	
	
				//	Constructs	a	node	with	the	given	data	and	the	given	next	link.	
				ListNode(int	data,	ListNode*	next)	{	
								this->data	=	data;	
								this->next	=	next;	
				}	
};	
	

Here is a diagram of two	ListNodes	that result from running the two lines of code below.	
Notice what the different arrows point to (whether it is the object instances of ListNode	or
the data inside).

	
	 	 ListNode*	node	=	new	ListNode(3);	
	 	 node->next	=	new	ListNode(5);	

	
	
	 	 	 	 	 	 	 	 	 	
	
	
	

LinkedList	class (represents a chain of many list nodes, keeping a pointer to the front
node only)

class	LinkedList	{	
public:	
				void	add(int	value);	
				void	insert(int	index,	int	value);	
				bool	isEmpty()	const;	
				void	remove(int	index);	
				int	size()	const;	
				string	toString()	const;	
				...	
	
private:	
				ListNode*	m_front;			//	NULL	if	list	is	empty	
};	

ListNode	 ListNode	

 3	

node->next	

 5	node	

node->next->next	==	NULL	

node->data	 node->next->data	

 6

Binary	Tree	Reference	Sheet
struct	TreeNode	{	
				int	data;	
				TreeNode*	left;	
				TreeNode*	right;	
				...	
};	
	
	
class	BinaryTree	{	
public:	
				member	functions;	
private:	
				TreeNode*	root;	//	NULL	if	empty	
};	

