
CS106X

Autumn 2015 Cynthia Lee

Section 5 (Week 6) – SOLUTION
 Problem and solution authors include Marty Stepp and Ilan Goodman

Problem 1 Solution: Linked Node Manipulation

a)
list->next->next	=	new	ListNode(3,	NULL);	//	2	->	3	

b)
list	=	new	ListNode(3,	list);	 //	3	->	1		and		list	->	3	

c)
temp->next->next	=	list->next;	 //	4	->	2	
list->next	=	temp;	 //	1	->	3	

d)
list->next->next	=	temp->next;	 //	2	->	4	
temp->next	=	list->next;	 //	3	->	2	
list->next	=	temp;	 //	1	->	3	

e)
ListNode*	list2	=	list;	 //	list2	->	1	
list	=	list->next;	 //	list	->	2	
list2->next	=	list2->next->next;	 //	1	->	3	
list->next	=	NULL;	 //	2	/	

f)
ListNode*	temp	=	list->next->next;	 //	temp	->	3	
temp->next	=	list->next;	 //	3	->	4	
list->next->next	=	list;	 //	4	->	5	
list->next->next->next	=	NULL;	 //	5	/	
list	=	temp;	 //	list	->	3	

g)
list->next->next->next	=	list;	 //	3	->	5	
list	=	list->next->next;	 //	list	->	3	
ListNode*	list2	=	list->next->next;	 //	list2	->	4	
list->next->next	=	NULL;	 //	5	/	

Problem 2 Solution: Linked List Member Functions

1. bool	LinkedList::isSorted()	const	{
				if	(m_front	!=	NULL)	{	
								ListNode*	current	=	m_front;	
	
								while	(current->next	!=	NULL)	{	
												if	(current->data	>	current->next->data)	{	
																return	false;	
												}	
	
												current	=	current->next;	
								}	
				}	
	
				return	true;	
}

 2

2. int	LinkedList::deleteBack()	{
				if	(m_front	==	NULL)	{	
								throw	"empty	list";	
				}	
	
				int	result	=	0;	
	
				if	(m_front->next	==	NULL)	{	
								result	=	m_front->data;	
								delete	m_front;	
								m_front	=	NULL;	
				}	else	{	
								ListNode*	current	=	m_front;	
	
								while	(current->next->next	!=	NULL)	{	
												current	=	current->next;	
								}	
	
								result	=	current->next->data;	
								delete	current->next;	
								current->next	=	NULL;	
				}	
	
				return	result;	
}	

3. void	LinkedList::reverse()	{

				ListNode*	current	=	m_front;	
				ListNode*	previous	=	NULL;	
	
				while	(current	!=	NULL)	{	
								ListNode*	nextNode	=	current->next;	
								current->next	=	previous;	
								previous	=	current;	
								current	=	nextNode;	
				}	
	
				m_front	=	previous;	
}	

4. void	LinkedList::doubleList()	{

				if	(m_front	!=	NULL)	{	
								ListNode*	half2	=	new	ListNode(m_front->data);	
								ListNode*	back	=	half2;	
								ListNode*	current	=	m_front;	
	
								while	(current->next	!=	NULL)	{	
												current	=	current->next;	
												back->next	=	new	ListNode(current->data);	
												back	=	back->next;	
								}	
	
								current->next	=	half2;	
				}	
}	

 3

5. void	LinkedList::split()	{
				if	(m_front	!=	NULL)	{	
								ListNode*	current	=	m_front;	
	
								while	(current->next	!=	NULL)	{	
												if	(current->next->data	<	0)	{	
																ListNode*	temp	=	current->next;	
																current->next	=	current->next->next;	
																temp->next	=	m_front;	
																m_front	=	temp;	
												}	else	{	
																current	=	current->next;	
												}	
								}	
				}	
}	

6. void	LinkedList::stutter()	{

				ListNode*	current	=	m_front;	
				while	(current	!=	NULL)	{	
								current->next	=	new	ListNode(current->data,	
																																					current->next);	
								current	=	current->next->next;	
				}	
}	

Problem 3 Solution: Binary Tree Member Functions

1. int	BinaryTree::height()	{	
				return	height(root);	
}	
	
int	BinaryTree::height(const	TreeNode*&	node)	{	
				if	(node	==	NULL)	{	
								return	0;	
				}	else	{	
								return	1	+	max(height(node->left),	height(node->right));	
				}	
}	

2. bool	BinaryTree::isBST()	{	
				TreeNode*	prev	=	NULL;	
				return	isBST(root,	prev);	
}	
	
//	An	in-order	walk	of	the	tree,	storing	the	last	visited	node	in	
//	'prev'	
bool	BinaryTree::isBST(const	TreeNode*&	node,	TreeNode*&	prev)	{	
				if	(node	==	NULL)	{	
								return	true;	
				}	else	if	(!isBST(node->left,	prev)	||	
															(prev	&&	node->data	<=	prev->data))	{	
								return	false;	
				}	else	{	
								prev	=	node;	
								return	isBST(node->right,	prev);	
				}	
}	

 4

3. void	BinaryTree::limitPathSum(int	max)	{	
				limPathSum(root,	max,	0);	
}	
	
void	BinaryTree::limPathSum(TreeNode*&	node,	int	max,	int	sum)	{	
				if	(node	!=	NULL)	{	
								sum	+=	node->data;	
	
								if	(sum	>	max)	{	
												deleteTree(node);	//	frees	subtree	rooted	at	node	
												node	=	NULL;	
								}	else	{	
												limPathSum(node->left,		max,	sum);	
												limPathSum(node->right,	max,	sum);	
								}	
				}	
}	

4. bool	BinaryTree::isBalanced()	{	

				return	isBalanced(root);	
}	
	
bool	BinaryTree::isBalanced(const	TreeNode*&	node)	{	
				if	(node	==	NULL)	{	
								return	true;	
				}	else	if	(!isBalanced(node->left)	||	
															!isBalanced(node->right))	{	
								return	false;	
				}	else	{	
								int	leftHeight		=	height(node->left);	
								int	rightHeight	=	height(node->right);	
								return	abs(leftHeight	-	rightHeight)	<=	1;	
				}	
}	

5. void	BinaryTree::completeToLevel(int	k)	{	

				if	(k	<	1)	{	
								throw	k;	
				}	
	
				completeToLevel(root,	k,	1);	
}	
	
void	BinaryTree::completeToLevel(TreeNode*&	node,	
																																	int	k,	
																																	int	level)	{	
				if	(level	<=	k)	{	
								if	(node	==	NULL)	{	
												node	=	new	TreeNode(-1);	
								}	
	
								completeToLevel(node->left,	k,	level	+	1);	
								completeToLevel(node->right,	k,	level	+	1);	
				}	
}	

 5

6. int	BinaryTree::countLeftNodes()		{	
				return	countLeftNodes(root);	
}	
int	BinaryTree::countLeftNodes(TreeNode*	node)	{	
				if	(node	==	NULL)	{	
								return	0;	
				}	else	if	(node->left	==	NULL)	{	
								return	countLeftNodes(node->right);	
				}	else	{	
								return	1	+	countLeftNodes(node->left)	
																	+	countLeftNodes(node->right);	
				}	
}	

Problem 4 Solution: Aesop’s Algorithms

//	Actually	runs	in	O(N)	time	(prove	this)	
bool	hasACycle(const	ListNode*&	head)	{	
				//	Two	pointers	=	O(1)	auxiliary	space	
				ListNode*	hare	=	head;	
				ListNode*	tortoise	=	head;	
					
				//	Loop	until	we	reach	the	end	of	an	acyclic	list	
				while	(hare	!=	NULL)	{	
								hare	=	hare->next;	
									
								if	(hare	==	NULL)	{	
												return	false;	
								}	
									
								hare	=	hare->next;	
								tortoise	=	tortoise->next;	
									
								//	We	have	found	a	cycle!	
								if	(hare	==	tortoise)	{	
												//	To	find	the	length	of	the	loop,	just	let	the	hare	do	a	
												//	victory	lap	here	until	she	runs	into	the	tortoise	again	
												return	true;	
								}	
				}	
					
				return	false;	
}	

