CS106X
Autumn 2015 Cynthia Lee

Section 5 (Week 6) — SOLUTION

Problem and solution authors include Marty Stepp and llan Goodman

Problem 1 Solution: Linked Node Manipulation

a)
list->next->next = new ListNode(3, NULL); // 2 -> 3

b)
list = new ListNode(3, list); // 3 ->1 and 1list -> 3

)
temp->next->next = list->next; // 4 -> 2
list->next = temp; // 1 ->3

d)
list->next->next = temp->next; // 2 -> 4
temp->next = list->next; // 3 ->2
list->next = temp; // 1 ->3

e)
ListNode* list2 = list; // list2 -> 1
list = list->next; // list -> 2
list2->next = list2->next->next; // 1 ->3
list->next = NULL; // 2/

f)
ListNode* temp = list->next->next; // temp -> 3
temp->next = list->next; // 3 ->4
list->next->next = list; // 4 ->5
list->next->next->next = NULL; // 5/
list = temp; // list -> 3

g
list->next->next->next = list; // 3 ->5
list = list->next->next; // list -> 3
ListNode* list2 = list->next->next; // list2 -> 4
list->next->next = NULL; // 5/

Problem 2 Solution: Linked List Member Functions

1. bool LinkedList::isSorted() const {
if (m_front != NULL) {
ListNode* current = m_front;

while (current->next != NULL) {

if (current->data > current->next->data) {
return false;

current = current->next;

}

return true;

2. int LinkedList::deleteBack() {
if (m_front == NULL) {
throw "empty list";

int result = 0;

if (m_front->next == NULL) {
result = m_front->data;
delete m_front;
m_front = NULL;

} else {
ListNode* current = m_front;

while (current->next->next != NULL) {
) current = current->next;

result = current->next->data;
delete current->next;
current->next = NULL;

}

return result;

}

3. void LinkedList::reverse() {
ListNode* current = m_front;
ListNode* previous = NULL;

while (current != NULL) {
ListNode* nextNode = current->next;
current->next = previous;
previous = current;
current = nextNode;

}

m_front = previous;

}

4. void LinkedList::doubleList() {
if (m_front != NULL) {
ListNode* half2 = new ListNode(m_front->data);
ListNode* back = half2;
ListNode* current = m_front;

while (current->next != NULL) {
current = current->next;
back->next = new ListNode(current->data);
back = back->next;

}

current->next = half2;

5. void LinkedList::split() {
if (m_front != NULL) {
ListNode* current = m_front;

while (current->next != NULL) {

if (current->next->data < 0) {
ListNode* temp = current->next;
current->next = current->next->next;
temp->next = m_front;
m_front = temp;

} else {

} current = current->next;

}

6. void LinkedList::stutter() {
ListNode* current = m_front;
while (current != NULL) {
current->next = new ListNode(current->data,
current->next);
current = current->next->next;

}

Problem 3 Solution: Binary Tree Member Functions

1. int BinaryTree::height() {
) return height(root);

int BinaryTree::height(const TreeNode*& node) {
if (node == NULL) {
return 9;
} else {

return 1 + max(height(node->left), height(node->right));

}
}

2. bool BinaryTree::isBST() {
TreeNode* prev = NULL;
return isBST(root, prev);

}

// An in-order walk of the tree, storing the last visited node in

// 'prev'

bool BinaryTree::isBST(const TreeNode*& node, TreeNode*& prev) {

if (node == NULL) {
return true;
} else if (!isBST(node->left, prev)
(prev && node->data <= prev->data)) {
return false;
} else {
prev = node;
return isBST(node->right, prev);

. void BinaryTree::limitPathSum(int max) {
limPathSum(root, max, 0);

void BinaryTree::limPathSum(TreeNode*& node, int max, int sum) {
if (node != NULL) {
sum += node->data;

if (sum > max) {
deleteTree(node); // frees subtree rooted at node
node = NULL;

} else {
limPathSum(node->left, max, sum);
limPathSum(node->right, max, sum

J

}

. bool BinaryTree::isBalanced() {
y return isBalanced(root);

bool BinaryTree::isBalanced(const TreeNode*& node) {
if (node == NULL) {
return true;
} else if (!isBalanced(node->left) ||
lisBalanced(node->right)) {
return false;
} else {
int leftHeight height§node->left);
int rightHeight = height(node->right);
return abs(leftHeight - rightHeight) <= 1;

}
}
. void BinaryTree::completeToLevel(int k) {
if (k < 1) {
) throw k;

completeTolLevel(root, k, 1);

void BinaryTree::completeTolLevel(TreeNode*& node,
int k
int lével) {

if (level <= k) {
if (node == NULL) {
) node = new TreeNode(-1);

completeToLevelgnode—>1eft, k, level + 1);
completeToLevel(node->right, k, level + 1);

6. int BinaryTree::countLeftNodes() {
return countLeftNodes(root);

int BinaryTree::countLeftNodes(TreeNode* node) {

if (node == NULL) {

return 0;
} else if (node->left == NULL) {

return countLeftNodes(node->right);
} else {

return 1 + countLeftNodes?node—>left)

+ countLeftNodes(node->right);

}

Problem 4 Solution: Aesop’s Algorithms
// Actually runs in O(N) time (prove this)
bool hasACycle(const ListNode*& head) {
// Two pointers = 0(1) auxiliary space
ListNode* hare = head;
ListNode* tortoise = head;

// Loop until we reach the end of an acyclic list
while (hare != NULL) {
hare = hare->next;

if (hare == NULL) {
return false;

}

hare = hare->next;
tortoise = tortoise->next;

// We have found a cycle!

if (hare == tortoise) {
// To find the length of the loop, just let the hare do a
// victory lap here until she runs into the tortoise again
return true;

}

return false;

