CS106X
Autumn 2015

Cynthia Lee

Section 6 (Week 7) Handout

Problem 1: Tree Rotations

Problem and solution authors include Jerry Cain and Cynthia Lee.

Recall in class we saw the video of the insertions to a red-black tree, which first followed the
usual insert algorithm (go left if key being inserted is less than current, go right if greater than
current), and then did additional “rotations” that rebalanced the tree. Now is your chance to
explore the code that makes the rebalancing happen. Rotations have other uses; for example, in
Splay trees, they can be used to migrate more commonly-used elements towards the root.

Suppose that a binary search
tree has grown to store the first
seven integers, as has the tree
drawn to the right. Suppose that
a program then searches for the
5. Clearly the search would
succeed, but the standard
implementation would leave the
node in the same position, and
later searches for the same
element would take the same
amount of time.

A cleverer implementation
would anticipate another search
for 5 is likely, and would change
the pointer structure in the
vicinity of the 5 by performing
what is called a left-rotation. A
left rotation pivots around the
link between a node and its
parent, so that the child of the
link rotates counterclockwise to
become the parent of its parent.
In our example above, a left-
rotation would change the
structure according to the figure
on the right. Note that the
restructuring is a local
operation, in that only a
constant number of pointers
need to be updated. The key
observation is that 5 is brought
one level closer to the root, the

\\\‘ I‘- - -
\\,2__,/"| \\5_ y.
P .-"l-“ . -
1) \4 6)
\\?)
."'/.-- N e I;./ N
'\%-/_.l i I\:r_)_‘/l
" T L~
\1 J -\'_4 / \6 Y,

- \" :r_/-- “\'.
A \8
N v N e
_? J \,? J \? J

former parent of 5 becomes 5’s left child and in the process inherits what used to be the left
child of 5 as its right child. In general, these two nodes might occur anywhere in a binary search
tree. Notice that the binary search tree order property is maintained.

a)

b)

Write a function rotateLeft which performs the left rotation operation, like the one
shown in the figure above. It takes the parameter toRotateAddr, which is actually the
address of (!) a pointer to a node you want to rotate left (for example, the address of a
pointer to the node “3” in the first illustration above). You'll want to immediately change it
to simply a pointer to the node you want to rotate by using dereference:
node *toRotate = *toRotateAddr;

You'll do most of your operations on toRotate, then in the very last step you’ll need to use
toRotateAddr to redirect the parent (or tree class “root” pointer, in the case of the root).
For simplicity, you may assume that both the referenced node and its right child are both

non-NULL.
struct node {
int value;
node *left;
node *right;

¥
static void rotatelLeft(node **toRotateAddr);

Now, using the rotateLeft operation you just wrote, along with its symmetric counterpart
rotateRight (which you can assume works properly without actually writing it),
implement pullToRoot, which takes the address of a pointer to the root of a binary search
tree and bubbles the specified value up to the root. You may assume that the value is actually
present, although a particularly clever implementation would leave the tree unaltered if the
value is missing.

static void pullToRoot(node **rootAddr, int value);

Problem 2: Quadtrees

A quadtree is a rooted tree structure where each internal node has precisely four children. Every
node in the tree represents a square, and if a node has children, each encodes one of that square’s
four quadrants.

Quadtrees have many applications in computer graphics, because they can be used as in-
memory models of images. That they can be used as in-memory versions of black and white
images is easily demonstrated via the following (borrowed from Wikipedia.org):

.--"L'J‘:-..I Bx8

T ;lz ;I;IS W 4 x4
‘"‘Flil Qﬁ -
T |]L een1 plo

The 8 by 8 pixel image on the left is modeled by the quadtree on the right. Note that all leaf
nodes are either black or white, and all internal nodes are shaded gray. The internal nodes are
gray to reflect the fact that they contain both black and white pixels. When the pixels covered
by a particular node are all the same color, the color is stored in the form of a Boolean and all
four children are set to NULL. Otherwise, the node’s sub-region is recursively subdivided into
four sub-quadrants, each represented by one of four children.

Given a Grid<bool> representation of a black and white image, implement the
gridToQuadtree function, which reads the image data, constructs the corresponding
quadtree, and returns its root. Frame your implementation around the following data structure:

struct quadtree {
int lowx, highx; // smallest and largest x value covered by node
int lowy, highy; // smallest and largest y value covered by node
bool isBlack; // entirely black? true. Entirely white? False. Mixed? ignored
quadtree *children[4]; // © is NW, 1 is NE, 2 is SE, 3 is SW

}s

Assume the lower left corner of the image is the origin, and further assume the image is square
and that the dimension is a perfect power of two.

static quadtree *gridToQuadtree(Grid<bool>& image);

